Features of the microbiota for various malignant neoplasms
https://doi.org/10.17709/2410-1893-2024-11-3-7
EDN: MCIPTR
Abstract
The development of omics technologies and sequencing has significantly expanded the understanding of the role of microorganisms that inhabit various human organs and collectively make up its microbiota in the development of cancer. The extensive literature of recent years devoted to various aspects of the participation of the microbiota in carcinogenesis substantiates the relevance of analyzing the impact of its features on the processes of carcinogenesis in various human organs.
Purpose of the study. Analysis of literature data on the key issues of the relationship between the human microbiome and the risk of cancer and explore possible prospects for its use in the diagnosis, therapy and prevention of cancer.
Materials and methods. A literature search was carried out in the databases NCBI MedLine (PubMed), Scopus, Web of Science, based on an extended list of keywords that included all the localizations of malignant neoplasms (MNs) considered in the review. Original studies, meta-analyses, randomized controlled trials, and reviews published in recent years were used.
Results. Recent studies using omics technologies have shown significant differences in the composition of microbial communities of healthy and tumor tissues and have made it possible to characterize the potential tumor microbiota in some types of cancer. The microbiota present in the various organs of the human body forms a network through which it interacts via migration or by forming metabolic axes between organs. Dysbiosis plays an important role in carcinogenesis, and its presence in one organ can negatively affect the condition of other distant organs and contribute to the development of pathological conditions in them.
Conclusion. Numerous studies conducted over the past decade have revealed a complex relationship between microorganisms, tumors, and the host, reflecting the diverse effects of the microbiota on various organ- specific types of MNs. Gastrointestinal tract tumors, as well as sites outside it with significant bacterial associations, have been identified for a better understanding of the multifaceted mechanisms by which the microbiota influences cancer. The data obtained so far complement the emerging possibilities of using the microbiota in clinical practice, which represents a new approach to the prevention and treatment of malignant neoplasms.
Keywords
About the Authors
L. G. Solenova
Moscow, Russia Federation
Liya G. Solenova – Dr. Sci. (Biology), Scientific consultant of the Department of Chemical Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation ORCID: https://orcid.org/0000-0002-4443-8376, SPIN: 9946-6437, AuthorID: 112084, Scopus Author ID: 6507073123, Web of Science ResearcherID: ACA-0800-2022
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
N. I. Ryzhova
Moscow, Russia Federation
Natalia I. Ryzhova – Cand. Sci. (Biology), consultant of the Department of Chemical Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology ORCID: https://orcid.org/0000-0002-4224-6303, SPIN: 2766-0854, AuthorID: 79493, Scopus Author ID: 6603964497
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
I. A. Antonova
Moscow, Russia Federation
Irina A. Antonova – research assistant at the Laboratory for Chemical Carcinogenesis Pathway Studies, N. N. Blokhin National Medical Research Center of Oncology
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
G. A. Belitsky
Moscow, Russia Federation
Gennady A. Belitsky – Dr. Sci. (Medicine), Professor, major consultant of the Department of Chemical Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology ORCID: https://orcid.org/0000-0002-3167-7204, SPIN: 4037-0033, AuthorID: 107231, Scopus Author ID: 7004259245
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
K. I. Kirsanov
Peoples’ Friendship University of Russia (RUDN University)
Moscow, Russia Federation
Kirill I. Kirsanov – Dr. Sci. (Biology), Head of Laboratory of carcinogenic substances of the Department of Chemical Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology; Professor of the Department of Medical Practice, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia Federation ORCID: https://orcid.org/0000-0002-8599-6833, SPIN: 7329-7263, AuthorID: 184421, Scopus Author ID: 36461343900, Web of Science ResearcherID: AAA-2808-2019
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
M. G. Yakubovskaya
Peoples’ Friendship University of Russia (RUDN University)
Moscow, Russia Federation
Marianna G. Yakubovskaya – Dr. Sci. (Medicine), Head of the Department of Chemical Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology; chief researcher of Research Institute for Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia Federation ORCID: https://orcid.org/0000-0002-9710-8178, SPIN: 6858-3880, AuthorID: 583045, Scopus Author ID: 57217461641, Web of Science ResearcherID: R-6984-2016
Competing Interests:
The author declares that there are no obvious and potential conflicts of interest associated with the publication of this article.
References
1. O'Hara AM, Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006 Jul;7(7):688–693. doi: 10.1038/sj.embor.7400731
2. Rajpoot M, Sharma AK, Sharma A, Gupta GK. Understanding the microbiome: Emerging biomarkers for exploiting the microbiota for personalized medicine against cancer. Semin Cancer Biol. 2018 Oct;52(Pt 1):1–8. doi: 10.1016/j.semcancer.2018.02.003
3. de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020 Feb;8(2):e180–e190. doi: 10.1016/s2214-109x(19)30488-7
4. Radaic A, Kapila YL. The oralome and its dysbiosis: New insights into oral microbiome-host interactions. Comput Struct Biotechnol J. 2021 Feb 27;19:1335–1360. doi: 10.1016/j.csbj.2021.02.010
5. Chen T, Yu WH, Izard J, Baranova OV, Lakshmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (Oxford). 2010 Jul 6;2010:baq013. doi: 10.1093/database/baq013
6. Ganly I, Yang L, Giese RA, Hao Y, Nossa CW, Morris LGT, et al. Periodontal pathogens are a risk factor of oral cavity squamous cell carcinoma, independent of tobacco and alcohol and human papillomavirus. Int J Cancer. 2019 Aug 1;145(3):775–784. doi: 10.1002/ijc.32152
7. Li R, Xiao L, Gong T, Liu J, Li Y, Zhou X, Li Y, Zheng X. Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Mol Oral Microbiol. 2023 Feb;38(1):9–22. doi: 10.1111/omi.12403
8. Tuominen H, Rautava J. Oral Microbiota and Cancer Development. Pathobiology. 2021;88(2):116–126. doi: 10.1159/000510979
9. Arzmi MH, Dashper S, McCullough M. Polymicrobial interactions of Candida albicans and its role in oral carcinogenesis. J Oral Pathol Med. 2019 Aug;48(7):546–551. doi: 10.1111/jop.12905
10. Nieminen MT, Listyarifah D, Hagström J, Haglund C, Grenier D, Nordström D, et al. Treponema denticola chymotrypsin-like proteinase may contribute to orodigestive carcinogenesis through immunomodulation. Br J Cancer. 2018 Feb 6;118(3):428–434. doi: 10.1038/bjc.2017.409
11. Rai AK, Panda M, Das AK, Rahman T, Das R, Das K, et al. Dysbiosis of salivary microbiome and cytokines influence oral squamous cell carcinoma through inflammation. Arch Microbiol. 2021 Jan;203(1):137–152. doi: 10.1007/s00203-020-02011-w
12. Smędra A, Berent J. The Influence of the Oral Microbiome on Oral Cancer : A Literature Review and a New Approach. Biomolecules. 2023 May 11;13(5):815. doi: 10.3390/biom13050815
13. Wu L, Yang J, She P, Kong F, Mao Z, Wang S. Single-cell RNA sequencing and traditional RNA sequencing reveals the role of cancer-associated fibroblasts in oral squamous cell carcinoma cohort. Front Oncol. 2023 May 10;13:1195520. doi: 10.3389/fonc.2023.1195520
14. Fitzsimonds ZR, Rodriguez-Hernandez CJ, Bagaitkar J, Lamont RJ. From Beyond the Pale to the Pale Riders: The Emerging Association of Bacteria with Oral Cancer. J Dent Res. 2020 Jun;99(6):604–612. doi: 10.1177/0022034520907341
15. Maisonneuve P, Amar S, Lowenfels AB. Periodontal disease, edentulism, and pancreatic cancer: a meta-analysis. Ann Oncol. 2017 May 1;28(5):985–995. doi: 10.1093/annonc/mdx019
16. Michaud DS, Lu J, Peacock-Villada AY, Barber JR, Joshu CE, Prizment AE, et al. Periodontal Disease Assessed Using Clinical Dental Measurements and Cancer Risk in the ARIC Study. J Natl Cancer Inst. 2018 Aug 1;110(8):843–854. doi: 10.1093/jnci/djx278
17. Sakanaka A, Kuboniwa M, Shimma S, Alghamdi SA, Mayumi S, Lamont RJ, et al. Fusobacterium nucleatum Metabolically Integrates Commensals and Pathogens in Oral Biofilms. mSystems. 2022 Aug 30;7(4):e0017022. doi: 10.1128/msystems.00170-22
18. Zhang J, Bellocco R, Sandborgh-Englund G, Yu J, Sällberg Chen M, Ye W. Poor Oral Health and Esophageal Cancer Risk: A Nation-wide Cohort Study. Cancer Epidemiol Biomarkers Prev. 2022 Jul 1;31(7):1418–1425. doi: 10.1158/1055-9965.epi-22-0151
19. Yano Y, Abnet CC, Poustchi H, Roshandel G, Pourshams A, Islami F, et al. Oral Health and Risk of Upper Gastrointestinal Cancers in a Large Prospective Study from a High-risk Region: Golestan Cohort Study. Cancer Prev Res (Phila). 2021 Jul;14(7):709–718. doi: 10.1158/1940-6207.capr-20-0577
20. Zhao R, Li X, Yang X, et al. Association of Esophageal Squamous Cell Carcinoma with the Interaction Between Poor Oral Health and Single Nucleotide Polymorphisms in Regulating Cell Cycles and Angiogenesis: A Case-Control Study in High-Incidence Chinese. Cancer Control. 2022, 29, 10732748221075811. doi: 10.1177/10732748221075811
21. Moreira C, Figueiredo C, Ferreira RM. The Role of the Microbiota in Esophageal Cancer. Cancers (Basel). 2023 Apr 30;15(9):2576. doi: 10.3390/cancers15092576
22. Peters BA, Wu J, Pei Z, Yang L, Purdue MP, Freedman ND, et al. Oral Microbiome Composition Reflects Prospective Risk for Esophageal Cancers. Cancer Res. 2017 Dec 1;77(23):6777–6787. doi: 10.1158/0008-5472.can-17-1296
23. Lv J, Guo L, Liu JJ, Zhao HP, Zhang J, Wang JH. Alteration of the esophageal microbiota in Barrett's esophagus and esophageal adenocarcinoma. World J Gastroenterol. 2019 May 14;25(18):2149–2161. doi: 10.3748/wjg.v25.i18.2149
24. Lei J, Xu F, Deng C, Nie X, Zhong L, Wu Z, et al. Fusobacterium nucleatum promotes the early occurrence of esophageal cancer through upregulation of IL-32/PRTN3 expression. Cancer Sci. 2023 Jun;114(6):2414–2428. doi: 10.1111/cas.15787
25. Yang L, Francois F, Pei Z. Molecular pathways: pathogenesis and clinical implications of microbiome alteration in esophagitis and Barrett esophagus. Clin Cancer Res. 2012 Apr 15;18(8):2138–2144. doi: 10.1158/1078-0432.ccr-11-0934
26. Kostin RK, Malyugin DA, Solenova LG, et al. Gut microbiota and carcinogenesis in various human organs. Journal of microbiology, epidemiology and immunobiology 2023;100(1):110–125. (In Russ.). doi: 10.36233/0372-9311-310
27. Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010 Nov;7(11):629–641. doi: 10.1038/nrgastro.2010.154
28. Doorakkers E, Lagergren J, Engstrand L, Brusselaers N. Eradication of Helicobacter pylori and Gastric Cancer : A Systematic Review and Meta-analysis of Cohort Studies. J Natl Cancer Inst. 2016 Jul 14;108(9):djw132. doi: 10.1093/jnci/djw132
29. Park JY, Seo H, Kang CS, Shin TS, Kim JW, Park JM, et al. Dysbiotic change in gastric microbiome and its functional implication in gastric carcinogenesis. Sci Rep. 2022 Mar 11;12(1):4285. doi: 10.1038/s41598-022-08288-9
30. Chen XH, Wang A, Chu AN, Gong YH, Yuan Y. Mucosa-Associated Microbiota in Gastric Cancer Tissues Compared With Non-cancer Tissues. Front Microbiol. 2019 Jun 5;10:1261. doi: 10.3389/fmicb.2019.01261
31. Liu X, Shao L, Liu X, Ji F, Mei Y, Cheng Y, Liu F, Yan C, Li L, Ling Z. Alterations of gastric mucosal microbiota across different stomach microhabitats in a cohort of 276 patients with gastric cancer. EBioMedicine. 2019 Feb;40:336–348. doi: 10.1016/j.ebiom.2018.12.034
32. Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol. 2021 Sep 23;21(1):258. doi: 10.1186/s12866-021-02315-x
33. Dastmalchi N, Safaralizadeh R, Banan Khojasteh SM. The correlation between microRNAs and Helicobacter pylori in gastric cancer. Pathog Dis. 2019 Jun 1;77(4):ftz039. doi: 10.1093/femspd/ftz039
34. Zheng R, Wang G, Pang Z, Ran N, Gu Y, Guan X, et al. Liver cirrhosis contributes to the disorder of gut microbiota in patients with hepatocellular carcinoma. Cancer Med. 2020 Jun;9(12):4232–4250. doi: 10.1002/cam4.3045
35. Jiang JW, Chen XH, Ren Z, Zheng SS. Gut microbial dysbiosis associates hepatocellular carcinoma via the gut-liver axis. Hepatobiliary Pancreat Dis Int. 2019 Feb;18(1):19–27. doi: 10.1016/j.hbpd.2018.11.002
36. Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, et al. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms. 2023 May 8;11(5):1240. doi: 10.3390/microorganisms11051240
37. Pagliari D, Saviano A, Newton EE, Serricchio ML, Dal Lago AA, Gasbarrini A, Cianci R. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders. Mediators Inflamm. 2018 Feb 1;2018:7946431. doi: 10.1155/2018/7946431
38. Morgan XC, Huttenhower C. Meta'omic analytic techniques for studying the intestinal microbiome. Gastroenterology. 2014 May;146(6):1437–1448.e1. doi: 10.1053/j.gastro.2014.01.049
39. Martínez JE, Vargas A, Pérez-Sánchez T, Encío IJ, Cabello-Olmo M, Barajas M. Human Microbiota Network: Unveiling Potential Crosstalk between the Different Microbiota Ecosystems and Their Role in Health and Disease. Nutrients. 2021 Aug 24;13(9):2905. doi: 10.3390/nu13092905
40. Schwabe RF, Greten TF. Gut microbiome in HCC - Mechanisms, diagnosis and therapy. J Hepatol. 2020 Feb;72(2):230–238. doi: 10.1016/j.jhep.2019.08.016
41. Giallourou N, Urbaniak C, Puebla-Barragan S, Vorkas PA, Swann JR, Reid G. Characterizing the breast cancer lipidome and its interaction with the tissue microbiota. Commun Biol. 2021 Oct 27;4(1):1229. doi: 10.1038/s42003-021-02710-0
42. Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018 Jul 30;39(8):1068–1078. doi: 10.1093/carcin/bgy073
43. Eibl G, Rozengurt E. Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel). 2021 Oct 10;13(20):5067. doi: 10.3390/cancers13205067
44. Usyk M, Pandey A, Hayes RB, Moran U, Pavlick A, Osman I, et al. Bacteroides vulgatus and Bacteroides dorei predict immune-related adverse events in immune checkpoint blockade treatment of metastatic melanoma. Genome Med. 2021 Oct 13;13(1):160. doi: 10.1186/s13073-021-00974-z
45. Saus E, Iraola-Guzmán S, Willis JR, Brunet-Vega A, Gabaldón T. Microbiome and colorectal cancer: Roles in carcinogenesis and clinical potential. Mol Aspects Med. 2019 Oct;69:93–106. doi: 10.1016/j.mam.2019.05.001
46. Mima K, Sukawa Y, Nishihara R, Qian ZR, Yamauchi M, Inamura K, et al. Fusobacterium nucleatum and T Cells in Colorectal Carcinoma. JAMA Oncol. 2015 Aug;1(5):653–661. doi: 10.1001/jamaoncol.2015.1377
47. Ito M, Kanno S, Nosho K, Sukawa Y, Mitsuhashi K, Kurihara H, et al. Association of Fusobacterium nucleatum with clinical and molecular features in colorectal serrated pathway. Int J Cancer. 2015 Sep 15;137(6):1258–1268. doi: 10.1002/ijc.29488
48. Tahara T, Yamamoto E, Suzuki H, Maruyama R, Chung W, Garriga J, et al. Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res. 2014 Mar 1;74(5):1311–1318. doi: 10.1158/0008-5472.can-13-1865
49. Kim M, Vogtmann E, Ahlquist DA, Devens ME, Kisiel JB, Taylor WR, et al. Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio. 2020 Feb 18;11(1):e03186– 19. doi: 10.1128/mbio.03186-19
50. Perrone F, Belluomini L, Mazzotta M, Bianconi M, Di Noia V, Meacci F, et al. Exploring the role of respiratory microbiome in lung cancer : A systematic review. Crit Rev Oncol Hematol. 2021 Aug;164:103404. doi: 10.1016/j.critrevonc.2021.103404
51. Su K, Gao Y, He J. A comparison of the microbiome composition in lower respiratory tract at different sites in early lung cancer patients. Transl Lung Cancer Res. 2023 Jun 30;12(6):1264–1275. doi: 10.21037/tlcr-23-231
52. Najafi S, Abedini F, Azimzadeh Jamalkandi S, Shariati P, Ahmadi A, Gholami Fesharaki M. The composition of lung microbiome in lung cancer : a systematic review and meta-analysis. BMC Microbiol. 2021 Nov 11;21(1):315. doi: 10.1186/s12866-021-02375-z
53. Kovaleva O, Podlesnaya P, Rashidova M, Samoilova D, Petrenko A, Zborovskaya I, et al. Lung Microbiome Differentially Impacts Survival of Patients with Non-Small Cell Lung Cancer Depending on Tumor Stroma Phenotype. Biomedicines. 2020 Sep 13;8(9):349. doi: 10.3390/biomedicines8090349
54. Zhang J, Xia Y, Sun J. Breast and gut microbiome in health and cancer. Genes Dis. 2020 Aug 20;8(5):581–589. doi: 10.1016/j.gendis.2020.08.002
55. Prentice PM, Schoemaker MH, Vervoort J, Hettinga K, Lambers TT, van Tol EAF, et al. Human Milk Short-Chain Fatty Acid Composition is Associated with Adiposity Outcomes in Infants. J Nutr. 2019 May 1;149(5):716–722. doi: 10.1093/jn/nxy320
56. Mikó E, Kovács T, Sebő É, Tóth J, Csonka T, Ujlaki G, et al. Microbiome-Microbial Metabolome-Cancer Cell Interactions in Breast Cancer-Familiar, but Unexplored. Cells. 2019 Mar 29;8(4):293. doi: 10.3390/cells8040293
57. Parida S, Sharma D. The Microbiome-Estrogen Connection and Breast Cancer Risk. Cells. 2019 Dec 15;8(12):1642. doi: 10.3390/cells8121642
58. Kovács T, Mikó E, Ujlaki G, Yousef H, Csontos V, Uray K, Bai P. The involvement of oncobiosis and bacterial metabolite signaling in metastasis formation in breast cancer. Cancer Metastasis Rev. 2021 Dec;40(4):1223–1249. doi: 10.1007/s10555-021-10013-3
59. Burger M, Catto JW, Dalbagni G, Grossman HB, Herr H, Karakiewicz P, Kassouf W, Kiemeney LA, La Vecchia C, Shariat S, Lotan Y. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol. 2013 Feb;63(2):234–241. doi: 10.1016/j.eururo.2012.07.033
60. Sfanos KS, Yegnasubramanian S, Nelson WG, De Marzo AM. The inflammatory microenvironment and microbiome in prostate cancer development. Nat Rev Urol. 2018 Jan;15(1):11–24. do: 10.1038/nrurol.2017.167
61. Adebayo AS, Survayanshi M, Bhute S, Agunloye AM, Isokpehi RD, Anumudu CI, Shouche YS. Correction: The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl Trop Dis. 2017 Nov 15;11(11):e0006067. doi: 10.1371/journal.pntd.0006067. Erratum for: PLoS Negl Trop Dis. 2017 Aug 9;11(8):e0005826. doi: 10.1371/journal.pntd.0005826
62. Pearce MM, Zilliox MJ, Rosenfeld AB, Thomas-White KJ, Richter HE, Nager CW, et al.; Pelvic Floor Disorders Network. The female urinary microbiome in urgency urinary incontinence. Am J Obstet Gynecol. 2015 Sep;213(3):347.e1-11. doi: 10.1016/j.ajog.2015.07.009
63. Shrestha E, White JR, Yu SH, Kulac I, Ertunc O, De Marzo AM, et al. Profiling the Urinary Microbiome in Men with Positive versus Negative Biopsies for Prostate Cancer. J Urol. 2018 Jan;199(1):161–171. doi: 10.1016/j.juro.2017.08.001
64. Ahn HK, Kim K, Park J, Kim KH. Urinary microbiome profile in men with genitourinary malignancies. Investig Clin Urol. 2022 Sep;63(5):569–576. doi: 10.4111/icu.20220124
65. Lipworth L, Tarone RE, McLaughlin JK. Renal cell cancer among African Americans : an epidemiologic review. BMC Cancer. 2011 Apr 12;11:133. doi: 10.1186/1471-2407-11-133
66. Heidler S, Lusuardi L, Madersbacher S, Freibauer C. The Microbiome in Benign Renal Tissue and in Renal Cell Carcinoma. Urol Int. 2020;104(3-4):247–252. doi: 10.1159/000504029
67. Yang JW, Wan S, Li KP, Chen SY, Yang L. Gut and urinary microbiota: the causes and potential treatment measures of renal cell carcinoma. Front Immunol. 2023 Jun 27;14:1188520. doi: 10.3389/fimmu.2023.1188520
68. Chen Y, Ma J, Dong Y, Yang Z, Zhao N, Liu Q, et al. Characteristics of Gut Microbiota in Patients With Clear Cell Renal Cell Carcinoma. Front Microbiol. 2022 Jul 4;13:913718. doi: 10.3389/fmicb.2022.913718
69. Mingdong W, Xiang G, Yongjun Q, Mingshuai W, Hao P. Causal associations between gut microbiota and urological tumors: a two-sample mendelian randomization study. BMC Cancer. 2023 Sep 11;23(1):854. doi: 10.1186/s12885-023-11383-3
70. D'Antonio DL, Marchetti S, Pignatelli P, Piattelli A, Curia MC. The Oncobiome in Gastroenteric and Genitourinary Cancers. Int J Mol Sci. 2022 Aug 26;23(17):9664. doi: 10.3390/ijms23179664
71. Porto JG, Arbelaez MCS, Pena B, Khandekar A, Malpani A, Nahar B, et al. The Influence of the Microbiome on Urological Malignancies : A Systematic Review. Cancers (Basel). 2023 Oct 14;15(20):4984. doi: 10.3390/cancers15204984
72. da Silva APB, Alluri LSC, Bissada NF, Gupta S. Association between oral pathogens and prostate cancer: building the relationship. Am J Clin Exp Urol. 2019 Feb 18;7(1):1–10.
73. Fujita K, Matsushita M, De Velasco MA, Hatano K, Minami T, Nonomura N, Uemura H. The Gut-Prostate Axis: A New Perspective of Prostate Cancer Biology through the Gut Microbiome. Cancers (Basel). 2023 Feb 21;15(5):1375. doi: 10.3390/cancers15051375
74. Tachedjian G, O'Hanlon DE, Ravel J. The implausible "in vivo" role of hydrogen peroxide as an antimicrobial factor produced by vaginal microbiota. Microbiome. 2018 Feb 6;6(1):29. doi:10.1186/s40168-018-0418-3
75. Han M, Wang N, Han W, Ban M, Sun T, Xu J. Vaginal and tumor microbiomes in gynecological cancer (Review). Oncol Lett. 2023 Mar 3;25(4):153. doi: 10.3892/ol.2023.13739
76. Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal bacteria are a major modulator of host inflammatory responses in the female genital tract. Immunity. 2015 May 19;42(5):965–976. doi: 10.1016/j.immuni.2015.04.019
77. Sobstyl M, Brecht P, Sobstyl A, Mertowska P, Grywalska E. The Role of Microbiota in the Immunopathogenesis of Endometrial Cancer. Int J Mol Sci. 2022 May 20;23(10):5756. doi: 10.3390/ijms23105756
78. Martin DH, Marrazzo JM. The Vaginal Microbiome: Current Understanding and Future Directions. J Infect Dis. 2016 Aug 15;214 Suppl 1(Suppl 1):S36–41. doi: 10.1093/infdis/jiw184
79. Chase D, Goulder A, Zenhausern F, Monk B, Herbst-Kralovetz M. The vaginal and gastrointestinal microbiomes in gynecologic cancers : a review of applications in etiology, symptoms and treatment. Gynecol Oncol. 2015 Jul;138(1):190–200. doi: 10.1016/j.ygyno.2015.04.036
80. Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017 Sep;103:45–53. doi: 10.1016/j.maturitas.2017.06.025
81. Doerflinger SY, Throop AL, Herbst-Kralovetz MM. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner. J Infect Dis. 2014 Jun 15;209(12):1989–1999. doi: 10.1093/infdis/jiu004
82. Barczyński B, Frąszczak K, Grywalska E, Kotarski J, Korona-Głowniak I. Vaginal and Cervical Microbiota Composition in Patients with Endometrial Cancer. Int J Mol Sci. 2023 May 5;24(9):8266. doi: 10.3390/ijms24098266
83. Elkafas H, Walls M, Al-Hendy A, Ismail N. Gut and genital tract microbiomes: Dysbiosis and link to gynecological disorders. Front Cell Infect Microbiol. 2022 Dec 16;12:1059825. doi: 10.3389/fcimb.2022.1059825 Erratum in: Front Cell Infect Microbiol. 2023 May 12;13:1211349. doi: 10.3389/fcimb.2023.1211349
84. Li Y, Liu G, Gong R, Xi Y. Gut Microbiome Dysbiosis in Patients with Endometrial Cancer vs. Healthy Controls Based on 16S rRNA Gene Sequencing. Curr Microbiol. 2023 Jun 9;80(8):239. doi: 10.1007/s00284-023-03361-6
85. Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, et al. The biodiversity Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep. 2019 Feb 8;9(1):1691. doi: 10.1038/s41598-018-38031-2
86. Shanmughapriya S, Senthilkumar G, Vinodhini K, Das BC, Vasanthi N, Natarajaseenivasan K. Viral and bacterial aetiologies of epithelial ovarian cancer. Eur J Clin Microbiol Infect Dis. 2012 Sep;31(9):2311–2317. doi: 10.1007/s10096-012-1570-5
87. Wang Q, Zhao L, Han L, Fu G, Tuo X, Ma S, et al. The differential distribution of bacteria between cancerous and noncancerous ovarian tissues in situ. J Ovarian Res. 2020 Jan 18;13(1):8. doi: 10.1186/s13048-019-0603-4
88. Sharifian K, Shoja Z, Jalilvand S. The interplay between human papillomavirus and vaginal microbiota in cervical cancer development. Virol J. 2023 Apr 19;20(1):73. doi: 10.1186/s12985-023-02037-8
89. Trifanescu OG, Trifanescu RA, Mitrica RI, Bran DM, Serbanescu GL, Valcauan L, et al. The Female Reproductive Tract Microbiome and Cancerogenesis : A Review Story of Bacteria, Hormones, and Disease. Diagnostics (Basel). 2023 Feb 24;13(5):877. doi: 10.3390/diagnostics13050877
90. Chen Y, Knight R, Gallo RL. Evolving approaches to profiling the microbiome in skin disease. Front Immunol. 2023 Apr 4;14:1151527. doi: 10.3389/fimmu.2023.1151527
91. Kullander J, Forslund O, Dillner J. Staphylococcus aureus and squamous cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev. 2009 Feb;18(2):472–478. doi: 10.1158/1055-9965.epi-08-0905
92. Madhusudhan N, Pausan MR, Halwachs B, Durdević M, Windisch M, Kehrmann J, et al. Molecular Profiling of Keratinocyte Skin Tumors Links Staphylococcus aureus Overabundance and Increased Human β-Defensin-2 Expression to Growth Promotion of Squamous Cell Carcinoma. Cancers (Basel). 2020 Feb 26;12(3):541. doi: 10.3390/cancers12030541
93. Glatthardt T, Campos JCM, Chamon RC, de Sá Coimbra TF, Rocha GA, de Melo MAF, et al. Small Molecules Produced by Commensal Staphylococcus epidermidis Disrupt Formation of Biofilms by Staphylococcus aureus. Appl Environ Microbiol. 2020 Feb 18;86(5):e02539–19. doi: 10.1128/aem.02539-19
94. Nakatsuji T, Chen TH, Butcher AM, Trzoss LL, Nam SJ, Shirakawa KT, et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci Adv. 2018 Feb 28;4(2):eaao4502. doi: 10.1126/sciadv.aao4502
95. Li H, Goh BN, Teh WK, Jiang Z, Goh JPZ, Goh A, et al. Skin Commensal Malassezia globosa Secreted Protease Attenuates Staphylococcus aureus Biofilm Formation. J Invest Dermatol. 2018 May;138(5):1137–1145. doi: 10.1016/j.jid.2017.11.034
96. Wang J, Aldabagh B, Yu J, Arron ST. Role of human papillomavirus in cutaneous squamous cell carcinoma: a meta-analysis. J Am Acad Dermatol. 2014 Apr;70(4):621–629. doi: 10.1016/j.jaad.2014.01.857
97. Tutka K, Żychowska M, Reich A. Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea-A Systematic Review of the Literature. Microorganisms. 2020 Nov 8;8(11):1756. doi: 10.3390/microorganisms8111756
98. Yan D, Issa N, Afifi L, Jeon C, Chang HW, Liao W. The Role of the Skin and Gut Microbiome in Psoriatic Disease. Curr Dermatol Rep. 2017 Jun;6(2):94–103. doi: 10.1007/s13671-017-0178-5
99. Tumors of bones and articular cartilage (C40-C41). Epidemiology of Malignant Tumors. (In Russ.). Avaitable at: https://oncology.ru/specialist/epidemiology/malignant/C40.
100. Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science. 2020 May 29;368(6494):973–980. doi: 10.1126/science.aay9189
101. Perry LM, Cruz SM, Kleber KT, Judge SJ, Darrow MA, Jones LB, et al. Human soft tissue sarcomas harbor an intratumoral viral microbiome which is linked with natural killer cell infiltrate and prognosis. J Immunother Cancer. 2023 Jan;11(1):e004285. doi: 10.1136/jitc-2021-004285
102. Gruffaz M, Zhang T, Marshall V, Gonçalves P, Ramaswami R, Labo N, et al. Signatures of oral microbiome in HIV-infected individuals with oral Kaposi's sarcoma and cell-associated KSHV DNA. PLoS Pathog. 2020 Jan 17;16(1):e1008114. doi: 10.1371/journal.ppat.1008114
103. Chen C., Dorado Garcia H., Scheer M. et al. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol. 2019 Dec 20;9:1458. doi: 10.3389/fonc.2019.01458
104. Peng J, Tsang JY, Ho DH, Zhang R, Xiao H, Li D, et al. Modulatory effects of adiponectin on the polarization of tumor-associated macrophages. Int J Cancer. 2015 Aug 15;137(4):848–858. doi: 10.1002/ijc.29485
105. Grases-Pintó B, Abril-Gil M, Castell M, Rodríguez-Lagunas MJ, Burleigh S, Fåk Hållenius F, et al. Influence of Leptin and Adiponectin Supplementation on Intraepithelial Lymphocyte and Microbiota Composition in Suckling Rats. Front Immunol. 2019 Oct 9;10:2369. doi: 10.3389/fimmu.2019.02369
106. Peng J, Wang JY, Huang HF, Zheng TT, Li J, Wang LJ, Ma XC, Xiao HT. Adiponectin Deficiency Suppresses Rhabdomyosarcoma Associated with Gut Microbiota Regulation. Biomed Res Int. 2021 Jan 23;2021:8010694. doi: 10.1155/2021/8010694
Review
For citations:
Solenova L.G., Ryzhova N.I., Antonova I.A., Belitsky G.A., Kirsanov K.I., Yakubovskaya M.G. Features of the microbiota for various malignant neoplasms. Research and Practical Medicine Journal. 2024;11(3):85-102. (In Russ.) https://doi.org/10.17709/2410-1893-2024-11-3-7. EDN: MCIPTR