Preview

Research and Practical Medicine Journal

Advanced search

CIGB-552: Anticancer peptide with multimodal mechanisms and clinical promise for colorectal cancer

https://doi.org/10.17709/2410-1893-2025-12-2-8

EDN: VGKRHE

Abstract

Despite advances in chemotherapy and targeted therapy, resistance and systemic toxicity limit the clinical efficacy of current treatments of colorectal cancer (CRC).
Purpose of the study. To analyze published experimental studies on the peptide drug CIGB‑552, which targets COMMD1, and its potential use in the treatment of CRC.
Materials and methods. We conducted a literature search in NCBI MedLine (PubMed), Google Scholar, and Web of Science databases using a list of keywords that included: «CIGB‑552», «COMMD1», «NF-κB», «inflammation», «HIF1A», «hypoxia», «SOD1», «oxidative stress» and “colorectal cancer”. Original studies and reviews published in the last five were used, except for publications related to CIGB‑552, for which all studies published since 2013 were reviewed.
Results. Analysis of literature shows that the peptide CIGB‑552 inhibits NF-κB via COMMD1‑mediated ubiquitination of RELA and stabilization of NFKBIA, suppresses HIF1A-driven angiogenesis, and disrupts SOD1 activity to induce oxidative stress. Preclinical studies demonstrated tumor regression in xenograft models and disease stabilization in pet dogs with spontaneous tumors. Synergistic effects with chemotherapy were observed in vitro and in vivo, enhancing apoptosis and chemosensitivity. In the Phase I clinical trial, the main adverse event was a transient, mild pruritic rash, without hematological or organ toxicity. Pharmacokinetic data showed rapid clearance of the peptide from the circulation, suggesting long-term effective use. Mechanistic studies suggest preferential activity of the peptide in aggressive CRC subtypes: CMS4 and CMS1.
Conclusion. CIGB‑552's multimodal targeting of NF-κB, HIF1A, and oxidative stress impacts key resistance mechanisms in CRC, particularly in KRAS- or BRAF-mutated tumors (30–50 % of cases). The favorable safety profile, synergistic potential with chemotherapy, and predicted efficacy in high-risk subtypes warrant expanded clinical evaluation to optimize dosing and confirm therapeutic benefit.

About the Authors

J. R. Fernandez Masso
https://www.cigb.edu.cu/en/home/
Center for Genetic Engineering and Biotechnology

Havana, Cuba

 

Fernández Massó Julio Raúl – PhD, Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba

ORCID: https://orcid.org/0000-0002-0858-8465

Scopus Author ID: 57189256780


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



B. Oliva Arguelles
https://www.cigb.edu.cu/en/home/
Center for Genetic Engineering and Biotechnology

Havana, Cuba

 

Oliva Arguelles Brizaida – MsC, Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba

ORCID: https://orcid.org/0000-0003-4422-675X


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



M. Carpio Alvarez
https://www.cigb.edu.cu/en/home/
Center for Genetic Engineering and Biotechnology, Havana, Cuba;

Institute of Oncology Research, Bellinzona, Switzerland

 

Carpio Alvarez Maidel – MsC, Pharmaceutical Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba; Lymphoma & Genomics Research Program, Institute of Oncology Research, Bellinzona, Switzerland

ORCID: https://orcid.org/0000-0002-4718-050X


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



F. Hernandez Bernal
Center for Genetic Engineering and Biotechnology

Havana, Cuba

 

Hernandez Bernal Francisco – PhD, Clinical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, Cuba

ORCID: https://orcid.org/0000-0002-1857-4219


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



M. Limonta Fernández
https://www.cigb.edu.cu/en/home/
Center for Genetic Engineering and Biotechnology

Havana, Cuba

 

Limonta Fernández Miladys – PhD, Business Development Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba

ORCID: https://orcid.org/0000-0002-1664-5255

Scopus Author ID: 24528909600


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



H. Yueming
https://www.zju.edu.cn/english/
Zhejiang University

Hangzhou, China

 

Yueming Hu – PhD, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China

ORCID: https://orcid.org/0000-0003-2174-5987


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



M. Chen
https://www.zju.edu.cn/english/
Zhejiang University

Hangzhou, China

 

Chen Ming – PhD, Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China

ORCID: https://orcid.org/0000-0002-9677-1699


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



D. I. Chelovsky
https://sk.ru
Pelima, Skolkovo Innovation Center

 

Dmitry I. Chelovsky – MD, Pelima Project, Skolkovo Innovation Center, Moscow, Russian Federation

ORCID: https://orcid.org/0009-0006-6103-3078


Competing Interests:

Julio R. Fernández Massó, Brizaida M. Oliva Arguelles are listed as inventors on the CIGB-522 patent, with no other commercial or financial relationships that could be construed as a potential conflict of interest. Dimitri Chelovski is the project lead for CIGB-522 at the Skolkovo Innovation Center under project number 1124944.



References

1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74(3):229–263. https://doi.org/10.3322/caac.21834

2. Malignant neoplasms in Russia in 2023 (morbidity and mortality). Edited by Kaprin AD, Starinsky VV, Shakhzadova AO. Мoscow: P. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Radiology Research Centre of the Ministry of Health of the Russian Federation, 2024. (In Russ.). Available at: https://oncology-association.ru/wp-content/uploads/2024/08/zis-2023-elektronnaya-versiya.pdf. Accessed: 22.05.2025.

3. Sung H, Siegel RL, Laversanne M, Jiang C, Morgan E, Zahwe M, et al. Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncol. 2025;26(1):51–63. https://doi.org/10.1016/s1470-2045(24)00600-4

4. Fedyanin M. Yu., Gladkov O. A., Gordeev S. S., Karachun A. M., Kozlov N. A., Mamedli Z. Z., et al. Cancer of the colon, rectosigmoid junction and rectum. Malignant tumours. 2024;14(3S2-1):263–322. https://doi.org/10.18027/2224-5057-2024-14-3s2-1.1-14

5. Kim R, Tehfe M, Kavan P, Chaves J, Kortmansky JS, Chen EX, et al. Pembrolizumab Plus mFOLFOX7 or FOLFIRI for Microsatellite Stable/Mismatch Repair-Proficient Metastatic Colorectal Cancer: KEYNOTE-651 Cohorts B and D. Clin Colorectal Cancer. 2024 Jun;23(2):118–127.e6. https://doi.org/10.1016/j.clcc.2024.03.001

6. Babyshkina N, Popova N, Grigoryev E, Dronova T, Gervas P, Dobrodeev A, et al. Long-term response with the atypical reaction to nivolumab in microsatellite stability metastatic colorectal cancer: A case report. Drug Target Insights. 2024;18:4–7. https://doi.org/10.33393/dti.2024.2637

7. Zeineddine FA, Zeineddine MA, Yousef A, Gu Y, Chowdhury S, Dasari A, et al. Survival improvement for patients with metastatic colorectal cancer over twenty years. NPJ Precis Oncol 2023;7(1):16. https://doi.org/10.1038/s41698-023-00353-4

8. Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci. 2024 Nov 21;25(23):12507. https://doi.org/10.3390/ijms252312507

9. Chen X, Zhao Z, Laster KV, Liu K, Dong Z. Advancements in therapeutic peptides: Shaping the future of cancer treatment. Biochim Biophys Acta Rev Cancer. 2024 Nov;1879(6):189197. https://doi.org/10.1016/j.bbcan.2024.189197

10. Astrada S, Fernández Massó JR, Vallespí MG, Bollati-Fogolín M. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity. Molecules. 2018 Mar 30;23(4):801. https://doi.org/10.3390/molecules23040801

11. Fernández Massó JR, Oliva Argüelles B, Tejeda Y, Astrada S, Garay H, Reyes O, et al. The Antitumor Peptide CIGB-552 Increases COMMD1 and Inhibits Growth of Human Lung Cancer Cells. J Amino Acids. 2013;2013:251398. https://doi.org/10.1155/2013/251398

12. Riera-Romo M. COMMD1: A Multifunctional Regulatory Protein. J Cell Biochem. 2018 Jan;119(1):34–51. https://doi.org/10.1002/jcb.26151

13. Yong X, Zhou C, Billadeau DD, Jia D. Commanding the Commander: structure of a key protein machinery in endosomal trafficking. Signal Transduct Target Ther 2023;8(1):295. https://doi.org/10.1038/s41392-023-01568-4

14. van de Sluis B, Mao X, Zhai Y, Groot AJ, Vermeulen JF, van der Wall E, et al. COMMD1 disrupts HIF-1alpha/beta dimerization and inhibits human tumor cell invasion. J Clin Invest. 2010;120(6):2119–2130. https://doi.org/10.1172/JCI40583

15. Vonk WI, Wijmenga C, Berger R, van de Sluis B, Klomp LW. Cu,Zn superoxide dismutase maturation and activity are regulated by COMMD1. J Biol Chem. 2010;285(37):28991–29000. https://doi.org/10.1074/jbc.M110.101477

16. Stewart DJ, Short KK, Maniaci BN, Burkhead JL. COMMD1 and PtdIns(4,5)P(2) interaction maintain ATP7B copper transporter trafficking fidelity in HepG2 cells. J Cell Sci. 2019;132(19). https://doi.org/10.1242/jcs.231753

17. Maine GN, Mao X, Muller PA, Komarck CM, Klomp LW, Burstein E. COMMD1 expression is controlled by critical residues that determine XIAP binding. Biochem J 2009;417(2):601–609. https://doi.org/10.1042/BJ20080854

18. Cho S, McDonough E, Graf J, Shia J, Firat C, Urganci N, et al. Integrated multiplex analysis of cell death regulators in stage II colorectal cancer suggests patients with 'persister' cell profiles fail to benefit from adjuvant chemotherapy. BMJ Oncol. 2024;3(1):e000362. https://doi.org/10.1136/bmjonc-2024-000362

19. You G, Zhou C, Wang L, Liu Z, Fang H, Yao X, Zhang X. COMMD proteins function and their regulating roles in tumors. Front Oncol. 2023;13:1067234. https://doi.org/10.3389/fonc.2023.1067234

20. Bae T, Hallis SP, Kwak MK. Hypoxia, oxidative stress, and the interplay of HIFs and NRF2 signaling in cancer. Exp Mol Med. 2024 Mar;56(3):501–514. https://doi.org/10.1038/s12276-024-01180-8

21. Bardelčíková A, Šoltys J, Mojžiš J. Oxidative stress, inflammation and colorectal cancer: an overview. Antioxidants. 2023;12(4):901. https://doi.org/10.3390/antiox12040901

22. Li L, Xu T, Qi X. Balanced regulation of ROS production and inflammasome activation in preventing early development of colorectal cancer. Immunol Rev. 2025;329(1):e13417. https://doi.org/10.1111/imr.13417

23. Korbecki J, Simińska D, Gąssowska-Dobrowolska M, Listos J, Gutowska I, Chlubek D, Baranowska-Bosiacka I. Chronic and Cycling Hypoxia: Drivers of Cancer Chronic Inflammation through HIF-1 and NF-κB Activation: A Review of the Molecular Mechanisms. Int J Mol Sci. 2021 Oct 2;22(19):10701. https://doi.org/10.3390/ijms221910701

24. Castillo-Rodríguez RA, Trejo-Solís C, Cabrera-Cano A, Gómez-Manzo S, Dávila-Borja VM. Hypoxia as a Modulator of Inflammation and Immune Response in Cancer. Cancers (Basel). 2022 May 4;14(9):2291. https://doi.org/10.3390/cancers14092291

25. Beckers C, Pruschy M, Vetrugno I: Tumor hypoxia and radiotherapy: A major driver of resistance even for novel radiotherapy modalities. Semin Cancer Biol. 2024;98:19–30. https://doi.org/10.1016/j.semcancer.2023.11.006

26. Devarajan N, Manjunathan R, Ganesan SK. Tumor hypoxia: The major culprit behind cisplatin resistance in cancer patients. Crit Rev Oncol Hematol. 2021;162:103327. https://doi.org/10.1016/j.critrevonc.2021.103327

27. An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis. 2024;15(8):556. https://doi.org/10.1038/s41419-024-06939-5

28. Muller PA, van de Sluis B, Groot AJ, Verbeek D, Vonk WI, Maine GN, et al. Nuclear-cytosolic transport of COMMD1 regulates NF-kappaB and HIF-1 activity. Traffic. 2009;10(5):514–527. https://doi.org/10.1111/j.1600-0854.2009.00892.x

29. Bahrami A, Khalaji A, Bahri Najafi M, Sadati S, Raisi A, Abolhassani A, et al. NF-kappaB pathway and angiogenesis: insights into colorectal cancer development and therapeutic targets. Eur J Med Res. 2024;29(1):610. https://doi.org/10.1186/s40001-024-02168-w

30. Patel M, Horgan PG, McMillan DC, Edwards J. NF-kappaB pathways in the development and progression of colorectal cancer. Transl Res. 2018;197:43–56. https://doi.org/10.1016/j.trsl.2018.02.002

31. Vallespi MG, Pimentel G, Cabrales-Rico A, Garza J, Oliva B, Mendoza O, et al. Antitumor efficacy, pharmacokinetic and biodistribution studies of the anticancer peptide CIGB-552 in mouse models. J Pept Sci. 2014;20(11):850–859. https://doi.org/10.1002/psc.2676

32. Daghero H, Fernández Massó JR, Astrada S, Guerra Vallespí M, Bollati-Fogolín M. The Anticancer Peptide CIGB-552 Exerts Anti-Inflammatory and Anti-Angiogenic Effects through COMMD1. Molecules. 2020 Dec 31;26(1):152. https://doi.org/10.3390/molecules26010152

33. van de Sluis B, Groot AJ, Vermeulen J, van der Wall E, van Diest PJ, Wijmenga C, et al. COMMD1 Promotes pVHL and O2-Independent Proteolysis of HIF-1alpha via HSP90/70. PLoS One. 2009 Oct 5;4(10):e7332. https://doi.org/10.1371/journal.pone.0007332

34. Panda B, Tripathy A, Patra S, Kullu B, Tabrez S, Jena M. Imperative connotation of SODs in cancer: Emerging targets and multifactorial role of action. IUBMB Life. 2024;76(9):592–613. https://doi.org/10.1002/iub.2821

35. Das S, Maji S, Ruturaj, Bhattacharya I, Saha T, Naskar N, Gupta A. Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner. J Cell Sci. 2020 Dec 24;133(24):jcs246819. https://doi.org/10.1242/jcs.246819

36. Vonk WI, Kakkar V, Bartuzi P, Jaarsma D, Berger R, Hofker MH, et al. The Copper Metabolism MURR1 domain protein 1 (COMMD1) modulates the aggregation of misfolded protein species in a client-specific manner. PLoS One. 2014;9(4):e92408. https://doi.org/10.1371/journal.pone.0092408

37. Chun KS, Joo SH. Modulation of Reactive Oxygen Species to Overcome 5-Fluorouracil Resistance. Biomol Ther (Seoul). 2022;30(6):479– 489. https://doi.org/10.4062/biomolther.2022.017

38. Vallespi MG, Mestre B, Marrero MA, Uranga R, Rey D, Lugiollo M, et al. A first-in-class, first-in-human, phase I trial of CIGB-552, a synthetic peptide targeting COMMD1 to inhibit the oncogenic activity of NF-kappaB in patients with advanced solid tumors. Int J Cancer. 2021;149(6):1313–1321. https://doi.org/10.1002/ijc.33695

39. Vallespi MG, Rodriguez JC, Seoane LC, Alvarez P, Santana H, Garay H, et al. The first report of cases of pet dogs with naturally occurring cancer treated with the antitumor peptide CIGB-552. Res Vet Sci. 2017 Oct;114:502–510. https://doi.org/10.1016/j.rvsc.2017.09.029

40. Soleimani A, Rahmani F, Ferns GA, Ryzhikov M, Avan A, Hassanian SM. Role of the NF-kappaB signaling pathway in the pathogenesis of colorectal cancer. Gene. 2020;726:144132. https://doi.org/10.1016/j.gene.2019.144132

41. Tran CG, Goffredo P, Mott SL, Hart A, You YN, Vauthey JN, et al. The impact of KRAS mutation, microsatellite instability, and tumor laterality on the prognosis of nonmetastatic colon cancer. Surgery. 2022;171(3):657–665. https://doi.org/10.1016/j.surg.2021.10.043

42. Evertsson S, Sun XF. Protein expression of NF-kappaB in human colorectal adenocarcinoma. Int J Mol Med. 2002;10(5):547–550. https://doi.org/10.3892/ijmm.10.5.547

43. Hoye E, Kanduri C, Torgunrud A, Lorenz S, Edwin B, Larsen SG, et al. Enrichment of Cancer-Associated Fibroblasts, Macrophages, and Up-Regulated TNF-alpha Signaling in the Tumor Microenvironment of CMS4 Colorectal Peritoneal Metastasis. Cancer Med. 2025;14(1):e70521. https://doi.org/10.1002/cam4.70521

44. Rejali L, Seifollahi Asl R, Sanjabi F, Fatemi N, Asadzadeh Aghdaei H, et al. Principles of Molecular Utility for CMS Classification in Colorectal Cancer Management. Cancers. 2023;15(10):2746. https://doi.org/10.3390/cancers15102746

45. Gelfo V, Romaniello D, Mazzeschi M, Sgarzi M, Grilli G, Morselli A, et al. Roles of IL-1 in Cancer: From Tumor Progression to Resistance to Targeted Therapies. Int J Mol Sci. 2020 Aug 20;21(17):6009. https://doi.org/10.3390/ijms21176009

46. Gomez Rodriguez Y, Oliva Arguelles B, Riera-Romo M, Fernandez-De-Cossio J, Garay HE, Fernandez Masso J, Guerra Vallespi M. Synergic effect of anticancer peptide CIGB-552 and Cisplatin in lung cancer models. Mol Biol Rep. 2022;49(4):3197–3212. https://doi.org/10.1007/s11033-022-07152-3

47. Fu X, Deng X, Xiao W, Huang B, Yi X, Zou Y. Downregulation of NEAT1 sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine through modulation of the miR-506-3p/ZEB2/EMT axis. Am J Cancer Res. 2021;11(8):3841–3856. https://www.ncbi.nlm.nih.gov/pubmed/34522453

48. Miller AL, Garcia PL, Gamblin TL, Vance RB, Yoon KJ. Development of gemcitabine-resistant patient-derived xenograft models of pancreatic ductal adenocarcinoma. Cancer Drug Resist. 2020;3(3):572–585. https://doi.org/10.20517/cdr.2020.35

49. Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, Cho WC. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Communication and Signaling. 2024;22(1):7. https://doi.org/10.1186/s12964-023-01398-5

50. Wan ML, Wang Y, Zeng Z, Deng B, Zhu BS, Cao T, et al. Colorectal cancer (CRC) as a multifactorial disease and its causal correlations with multiple signaling pathways. Biosci Rep. 2020 Mar 27;40(3):BSR20200265. https://doi.org/10.1042/bsr20200265

51. Ramadass V, Vaiyapuri T, Tergaonkar V. Small Molecule NF-kappaB Pathway Inhibitors in Clinic. Int J Mol Sci. 2020;21(14). https://doi.org/10.3390/ijms21145164

52. Hansen TF, Qvortrup C, Pfeiffer P. Angiogenesis Inhibitors for Colorectal Cancer. A Review of the Clinical Data. Cancers (Basel). 2021 Mar 1;13(5):1031. https://doi.org/10.3390/cancers13051031

53. Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis. 2023 Mar 30;11(1):234–251. https://doi.org/10.1016/j.gendis.2023.02.039

54. Basak D, Uddin MN, Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers 2020;12(11):3336. https://doi.org/10.3390/cancers12113336

55. Gu Y, Yang R, Zhang Y, Guo M, Takehiro K, Zhan M, Yang L, Wang H. Molecular mechanisms and therapeutic strategies in overcoming chemotherapy resistance in cancer. Mol Biomed. 2025 Jan 6;6(1):2. https://doi.org/10.1186/s43556-024-00239-2

56. Zińczuk J, Maciejczyk M, Zaręba K, Romaniuk W, Markowski A, Kędra B, et al. Antioxidant Barrier, Redox Status, and Oxidative Damage to Biomolecules in Patients with Colorectal Cancer. Can Malondialdehyde and Catalase Be Markers of Colorectal Cancer Advancement? Biomolecules. 2019 Oct 22;9(10):637. https://doi.org/10.3390/biom9100637

57. Eskander G, Abdelhamid SG, Wahdan SA, Radwan SM. Insights on the crosstalk among different cell death mechanisms. Cell Death Discov. 2025 Feb 10;11(1):56. https://doi.org/10.1038/s41420-025-02328-9

58. König S, Strassheimer F, Brandner NI, Schröder JH, Urban H, Harwart LF, et al. Superoxide dismutase 1 mediates adaptation to the tumor microenvironment of glioma cells via mammalian target of rapamycin complex 1. Cell Death Discov. 2024 Aug 26;10(1):379. https://doi.org/10.1038/s41420-024-02145-6

59. Warsinggih, Irawan B, Labeda I, Lusikooy RE, Sampetoding S, Kusuma MI, et al. Association of superoxide dismutase enzyme with staging and grade of differentiation colorectal cancer: A cross-sectional study. Ann Med Surg (Lond). 2020 Sep 2;58:194–199. https://doi.org/10.1016/j.amsu.2020.08.032


Review

For citations:


Fernandez Masso J., Oliva Arguelles B., Carpio Alvarez M., Hernandez Bernal F., Limonta Fernández M., Yueming H., Chen M., Chelovsky D.I. CIGB-552: Anticancer peptide with multimodal mechanisms and clinical promise for colorectal cancer. Research and Practical Medicine Journal. 2025;12(2):90-105. (In Russ.) https://doi.org/10.17709/2410-1893-2025-12-2-8. EDN: VGKRHE

Views: 132


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)