Preview

Research and Practical Medicine Journal

Advanced search

Possibilities of vaccine therapy for the treatment of glioblastoma

https://doi.org/10.17709/2410-1893-2025-12-3-7

Abstract

Glioblastoma is the most common and most aggressive primary brain tumor with a median survival of less than two years. Great hopes in the complex treatment of glioblastomas are placed on the use of immunotherapy, including vaccine therapy.
Purpose of the study. To reflect the features of the use of vaccine therapy for brain tumors based on the analysis of modern scientific publications and present the results obtained in Russia and abroad. Materials and methods. The literature search was conducted in the Medline, E-library, PubMed systems.
Results. The review presents data on unsatisfactory results of standard treatment of glioblastomas, characterizes their biological differences that determine weak sensitivity to most types of antitumor therapy and difficulties arising during vaccination; describes the properties of dendritic cells and their significance for the development of one of the main types of vaccines. The results of non-randomized and few randomized studies on the clinical use of vaccine therapy in Russia and abroad, mainly dendritic cell vaccines (DCVs) in patients with glioblastomas are highlighted. The prospects of personalized vaccination are emphasized; the effect of DCVs on some components of the immune system is described, as well as the dual role of exosomes in the development of a malignant process, resistance to treatment and the possibility of their use in creating vaccines. Information on clinical experience with the use of peptide vaccines and vaccines based on matrix RNA is presented.
Conclusion. Despite certain difficulties in the use of vaccine therapy in patients with glioblastomas, encouraging results have been obtained in Russia and abroad. It is emphasized that antitumor vaccines have undoubted potential for the treatment of glioblastomas and are becoming promising methods of immunotherapy that can bring clinical benefit to patients with these most aggressive and difficult to treat malignant tumors.

About the Authors

I. A. Goroshinskaya
National Medical Research Centre for Oncology
Russian Federation

Irina A. Goroshinskaya – Dr. Sci. (Biology), Professor, Senior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study 

Author ID: 79968, Scopus Author ID: 6602191458, WoS Researcher ID: Y-2277-2018 

63 14 line str., Rostov-on-Don 344037 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

Elena M. Frantsiyants – Dr. Sci. (Biology), Professor, Deputy General Director for Science 

Author ID: 462868, Scopus Author ID: 55890047700, WoS ResearcherID: Y-1491-2018 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



I. V. Kaplieva
National Medical Research Centre for Oncology
Russian Federation

Irina V. Kaplieva – Dr. Sci. (Medicine), Associate Professor, Head of the Laboratory of Malignant Tumor Pathogenesis Study 

Author ID: 734116, Scopus Author ID: 23994000800, WoS ResearcherID: ААЕ-3540-2019 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



E. I. Surikova
National Medical Research Centre for Oncology
Russian Federation

Ekaterina I. Surikova – Cand. Sci. (Biology), Senior Researcher of the Laboratory of Malignant Tumor Pathogenesis Study 

Author ID: 301537, Scopus Author ID: 6507092816, WoS ResearcherID: AAG-8748-2019 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



V. A. Bandovkina
National Medical Research Centre for Oncology
Russian Federation

Valerija A. Bandovkina – Dr. Sci. (Biology), Associate Professor, Leading Researcher at Laboratory of Malignant Tumor Pathogenesis Study 

Author ID: 696989, Scopus Author ID: 57194276288, WoS ResearcherID: AAG-8708-2019 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



N. D. Ushakova
National Medical Research Centre for Oncology
Russian Federation

Nataliya D. Ushakova – Dr. Sci. (Medicine), MD, Professor, anesthesiologist-resuscitator of the Department of Anesthesiology and Resuscitation 

Author ID: 571594, Scopus Author ID: 8210961900 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



S. Yu. Filippova
National Medical Research Centre for Oncology
Russian Federation

Svetlana Yu. Filippova – research fellow at the laboratory of cell technologies, National Medical Research Centre for Oncology 

Author ID: 878784, Scopus Author ID: 57189618843, WoS ResearcherID: AAH-4408-2020 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



I. V. Mezhevova
National Medical Research Centre for Oncology
Russian Federation

Irina V. Mezhevova – junior research fellow at the laboratory of cell technologies, National Medical Research Centre for Oncology 

Author ID: 1011695, Scopus Author ID: 57296602900, WoS ResearcherID: AAI-1860-2019 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



E. E. Rostorguev
National Medical Research Centre for Oncology
Russian Federation

Eduard E. Rostorguev – Dr. Sci. (Medicine), MD, Associate Professor, neurosurgeon, Head of the Department of Neurooncology 

AuthorID: 794808, Scopus Author ID: 57196005138, WoS ResearcherID: AAK-6852-2020 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



N. S. Kuznetsova
National Medical Research Centre for Oncology
Russian Federation

Natalia S. Kuznetsova – MD, oncologist, Department of Neurooncology 

AuthorID: 920734, Scopus Author ID: 57208052623, WoS ResearcherID: AAG-8960-2020 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



S. E. Kavitskiy
National Medical Research Centre for Oncology
Russian Federation

Sergey E. Kavitskiy – Cand. Sci. (Medicine), MD, neurosurgeon, Consulting and Diagnostic Department 

AuthorID: 734582 

Rostov-on-Don 


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article. 



References

1. Malignant neoplasms in Russia in 2023 (morbidity and mortality). Edited by Kaprin AD, Starinsky VV, Shakhzadova AO. Мoscow: P. Hertsen Moscow Oncology Research Institute – Branch of the National Medical Radiology Research Centre of the Ministry of Health of the Russian Federation, 2024, 276 p. (In Russ.) Available at: https://oncology-association.ru/wp-content/uploads/2024/08/zis-2023-elektronnaya-versiya.pdf Accessed 21.02.2025.

2. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025 Jan-Feb;75(1):10–45. https://doi.org/10.3322/caac.21871

3. Yakovlenko YG. Glioblastoma: the current state of the problem. Medical Herald of the South of Russia. 2019;10(4):28–35. (In Russ.). https://doi.org/10.21886/2219-8075-2019-10-4-28-35

4. Van Gool SW, Makalowski J, Kampers LFC, Van de Vliet P, Sprenger T, Schirrmacher V, Stücker W. Dendritic cell vaccination for glioblastoma multiforme patients: has a new milestone been reached? Transl Cancer Res. 2023 Aug 31;12(8):2224–2228. https://doi.org/10.21037/tcr-23-603

5. Kurokawa R, Kurokawa M, Baba A, Ota Y, Pinarbasi E, Camelo-Piragua S, et al. Major changes in 2021 World Health Organization classification of central nervous system tumors. Radiographics. 2022 Sep-Oct;42(5):1474–1493. https://doi.org/10.1148/rg.210236

6. Mitrofanov AA, Naskhletashvili DR, Aleshin VA, Belov DM, Bekyashev AKh, Karakhan VB, et al. Causes of drug resistance and glioblastoma relapses. Head and Neck Tumors (HNT). 2021;11(1):101–108. (In Russ.). https://doi.org/10.17650/2222 1468 2021 11 1 101 108

7. Datsi A, Sorg RV. Dendritic cell vaccination of glioblastoma: Road to success or dead end. Front Immunol. 2021 Nov 2;12:770390. https://doi.org/10.3389/fimmu.2021.770390

8. Vanderbeek AM, Rahman R, Fell G, Ventz S., Chen T., Redd R. et al. The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro Oncol. 2018;20(8):1034–1043. https://doi.org/10.1093/neuonc/noy027

9. Stupp R, Taillibert S, Kanner A, Read W., Steinberg DM., Lhermitte B. et al. Effect of tumor-treating fields plus maintenance temozolomide vs maintenance temozolomide alone on survival in patients with glioblastoma: a randomized clinical trial. JAMA. 2017;318(23):2306–2316. https://doi.org/10.1001/jama.2017.18718

10. Tishina AV, Vladimirova LYu, Sagakyants AB, Dzhenkova EA, Novikova IA, Zlatnik EYu. Immunologic aspects of colorectal cancer progression. South Russian Journal of Cancer. 2024;5(1):52–59. https://doi.org/10.37748/2686-9039-2024-5-1-6

11. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373(1):23–34. https://doi.org/10.1056/NEJMoa1504030.

12. Buerki RA, Chheda ZS, Okada H. Immunotherapy of primary brain tumors: facts and hopes. Clin Cancer Res. 2018;24(21):5198– 5205. https://doi.org/10.1158/1078-0432.CCR-17-2769

13. Hotchkiss KM, Batich KA, Mohan A, Rahman R, Piantadosi S, Khasraw M. Dendritic cell vaccine trials in gliomas: Untangling the lines. Neuro Oncol. 2023 Oct 3;25(10):1752–1762. https://doi.org/10.1093/neuonc/noad088

14. Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol. 2018;105(2):166–174. https://doi.org/10.1016/j.yexmp.2018.07.007

15. Wei J, Chen P, Gupta P, Ott M, Zamler D, Kassab C, et al. Immune biology of glioma-associated macrophages and microglia: functional and therapeutic implications. Neuro Oncol. 2020 Feb 20;22(2):180–194. https://doi.org/10.1093/neuonc/noz212

16. Reardon DA, Mitchell DA. The development of dendritic cell vaccine-based immunotherapies for glioblastoma. Semin Immunopathol. 2017;39(2):225–239. https://doi.org/10.1007/s00281-016-0616-7

17. Yan Y, Zeng S, Gong Z, Xu Z. Clinical implication of cellular vaccine in glioma: current advances and future prospects. J Exp Clin Cancer Res. 2020 Nov 23;39(1):257. https://doi.org/10.1186/s13046-020-01778-6

18. Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol. 2021Feb;52:101481. https://doi.org/10.1016/j.smim.2021.101481

19. Wang Y, Xiang Y, Xin VW, Wang XW, Peng XC, Liu XQ, et al. Dendritic Cell Biology and its Role in Tumor Immunotherapy. J Hematol Oncol. 2020;13:107. https://doi.org/10.1186/s13045-020-00939-6

20. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic Cells in Cancer Immunology and Immunotherapy. Nat Rev Immunol. 2020;20:7–24. https://doi.org/10.1038/s41577-019-0210-z

21. Zhou J, Li L, Jia M, Liao Q, Peng G, Luo G, Zhou Y. Dendritic cell vaccines improve the glioma microenvironment: Influence, challenges, and future directions. Cancer Med. 2023 Mar;12(6):7207–7221. https://doi.org/10.1002/cam4.5511

22. Böttcher JP, Reis e Sousa C. The role of type 1 conventional dendritic cells in cancer immunity. Trends Cancer. 2018;4(11):784–792. https://doi.org/10.1016/j.trecan.2018.09.001

23. Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K and Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol. 2023;14:1259562. https://doi.org/10.3389/fimmu.2023.1259562

24. Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. J Neuroimmunol. 2018;322:63–73. https://doi.org/10.1016/j.jneuroim.2018.06.012

25. De Martino M, Vanpouille-Box C. Type I interferon induces cancer stem cells mediated chemotherapy resistance. Oncoimmunology. 2022;11(1):2127274. https://doi.org/10.1080/2162402X.2022.2127274

26. Rykov MYu, Dolgopolov IS. Experience in the use of dendritic vaccines in the treatment of patients with recurrent gliomas. Research and Practical Medicine Journal. 2022;9(4):18–29. (In Russ.). https://doi.org/10.17709/2410-1893-2022-9-4-2

27. Pellegatta S, Eoli M, Cuccarini V, Anghileri E, Pollo B, Pessina S, et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8+ T cell activation in the presence of adjuvant temozolomide. Oncoimmunology. 2018 Jan 29;7(4):e1412901. https://doi.org/10.1080/2162402X.2017.1412901

28. Eoli M, Corbetta C, Anghileri E, Di Ianni N, Milani M, Cuccarini V, et al. Expansion of effector and memory T cells is associated with increased survival in recurrent glioblastomas treated with dendritic cell immunotherapy. Neurooncol Adv. 2019 Aug 20;1(1):vdz022. https://doi.org/10.1093/noajnl/vdz022

29. Litterman AJ, Zellmer DM, Grinnen KL, Hunt MA, Dudek AZ, Salazar AM, Ohlfest JR. Profound impairment of adaptive immune responses by alkylating chemotherapy. The Journal of Immunology. 2013;190(12):6259–6268. https://doi.org/10.4049/jimmunol.1203539

30. Baldueva IA, Beliaev AM. Milestones in the development of oncoimmunology at the N.N. Petrov NMRC of oncology historical essay on the 110th anniversary of professor Tamara Aleksandrovna Korosteleva (1913-1991). Problems in Oncology. 2023;69(5):949–959. (In Russ.). https://doi.org/10.37469/0507-3758-2023-69-5-949-959

31. Baldueva IA, Novik AV, Efremova NA, Nekhaeva TL, Danilova AB, Emel'yanova NV, et al. The effectiveness of treatment of primary tumors of the central nervous system with the autologous CATEVAC dendritic cell vaccine. Problems in Oncology. 2022;68(3S):158– 159. (In Russ.).

32. Kulyova SA, Borokshinova KM, Baldueva IA, Nekhaeva TL, Artemyeva AS, Efremova NA, et al. Experience with multitargeted antitumor vaccine in a child with diffuse midline glioma, H3 K27M-mutant. Problems in Oncology. 2023;69(3):555–564. (In Russ.). https://doi.org/10.37469/0507-3758-2023-69-3-555-564

33. Troschke-Meurer S, Zumpe M, Meißner L, Siebert N, Grabarczyk P, Forkel H, et al. Chemotherapeutics used for high-risk neuroblastoma therapy improve the efficacy of anti-GD2 antibody dinutuximab beta in preclinical spheroid models. Cancers (Basel). 2023 Jan 31;15(3):904. https://doi.org/10.3390/cancers15030904

34. Nazha B, Inal C, Owonikoko TK. Disialoganglioside GD2 expression in solid tumors and role as a target for cancer therapy. Front Oncol. 2020;10:1000. https://doi.org/10.3389/fonc.2020.01000

35. Wingerter A, El Malki K, Sandhoff R, Seidmann L, Wagner DC, Lehmann N, et al. Exploiting gangliosides for the therapy of Ewing's sarcoma and H3K27M-mutant diffuse midline glioma. Cancers (Basel). 2021 Jan 29;13(3). https://doi.org/10.3390/cancers13030520

36. Borokshinova KM, Kulyova SA, Baldueva IA. Use of a vaccine preparation based on a new immunological adjuvant in a patient with diffuse medial glial tumor with H3K27M mutation. Russian Journal of Pediatric Hematology аnd Oncology. 2022;(S1):34–35. (In Russ.).

37. Borokshinova KM, Kulyova SA, Baldueva IA, Nekhaeva TL, Novik AV, Efremova NA, et al. Results of active immunotherapy in children with solid tumors. Problems in Oncology. 2023;69(3S):254–255. (In Russ.).

38. Liau LM, Ashkan K, Brem S, Campian JL, Trusheim JE, Iwamoto FM, et al. Association of autologous tumor lysate-loaded dendritic cell vaccination with extension of survival among patients with newly diagnosed and recurrent glioblastoma: A phase 3 prospective externally controlled cohort trial. JAMA Oncol. 2023;9(1):112–121. https://doi.org/10.1001/jamaoncol.2022.5370

39. Liau LM, Black KL, Martin NA, Sykes SN, Bronstein JM, Jouben-Steele L, et al. Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case Report. Neurosurg Focus. 2000 Dec 15;9(6):e8. https://doi.org/10.3171/foc.2000.9.6.9

40. Lv L, Huang J, Xi H, Zhou X. Efficacy and safety of dendritic cell vaccines for patients with glioblastoma: A meta-analysis of randomized controlled trials. Int Immunopharmacol. 2020;83:106336. https://doi.org/10.1016/j.intimp.2020.106336

41. Van Gool SW, Makalowski J, Van de Vliet P, Van Gool S., Sprenger T, Schirrmacher V, Stuecker W. Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel). 2023;15:1194. https://doi.org/10.3390/cancers15041194

42. Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, et al. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother. 2020;69(7):1375–1387. https://doi.org/10.1007/s00262-020-02496-w

43. Yang S, Sun Y, Liu W, Zhang Y, Sun G, Xiang B, Yang J. Exosomes in Glioma: Unraveling Their Roles in Progression, Diagnosis, and Therapy. Cancers (Basel). 2024 Feb 18;16(4):823. https://doi.org/10.3390/cancers16040823

44. Liu H, Chen L, Liu J, Meng H, Zhang R, Ma L, et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett. 2017;411:182–190. https://doi.org/10.1016/j.canlet.2017.09.022

45. Zhu H, Wang K, Wang Z, Wang D, Yin X, Liu Y, et al. An efficient and safe muc1-dendritic cell-derived exosome conjugate vaccine elicits potent cellular and humoral immunity and tumor inhibition in vivo. Acta Biomater. 2022;138:491–504. https://doi.org/10.1016/j.actbio.2021.10.041

46. Ghorbaninezhad F, Alemohammad H, Najafzadeh B, Masoumi J, Shadbad MA, Shahpouri M, et al. Dendritic cell-derived exosomes: A new horizon in personalized cancer immunotherapy? Cancer Lett. 2023;562:216168. https://doi.org/10.1016/j.canlet.2023.216168

47. Hao X, Wang S, Wang L, Li J, Li Y, Liu J. Exosomes as drug delivery systems in glioma immunotherapy. J Nanobiotechnology. 2024 Jun 18;22(1):340. https://doi.org/10.1186/s12951-024-02611-4

48. Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene. 2018 Apr;37(15):1949–1960. https://doi.org/10.1038/s41388-018-0455-1

49. Ciesielski MJ, Ahluwalia MS, Munich SA, Orton M, Barone T, Chanan-Khan A, Fenstermaker RA. Antitumor cytotoxic T-cell response induced by a survivin peptide mimic. Cancer Immunol Immunother. 2010 Aug;59(8):1211–1221. https://doi.org/10.1007/s00262-010-0845-x

50. Figel S, Birkemeier M, Dharma SS, Barone T, Steinmetz E, Ciesielski M, Fenstermaker R. Wild type, dEX3 and 2B survivin isoforms localize to the tumor cell plasma membrane, are secreted in exosomes, and interact with extracellular tubulin. Biochem Biophys Rep. 2021 Nov 20;28:101174. https://doi.org/10.1016/j.bbrep.2021.101174

51. Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, et al. Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer. 2003 Feb 15;97(4):1077–1083. https://doi.org/10.1002/cncr.11122

52. Ahluwalia MS, Reardon DA, Abad AP, Curry WT, Wong ET, Figel SA, et al. Phase IIa Study of SurVaxM Plus Adjuvant Temozolomide for Newly Diagnosed Glioblastoma. J Clin Oncol. 2023 Mar 1;41(7):1453–1465. https://doi.org/10.1200/JCO.22.00996

53. Sayour EJ, Boczkowski D, Mitchell DA, Nair SK. Cancer mRNA vaccines: clinical advances and future opportunities. Nat Rev Clin Oncol. 2024;21:489–500. https://doi.org/10.1038/s41571-024-00902-1

54. Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, et al. Lipid nanoparticle assisted mRNA delivery for potent cancer immunotherapy. Nano Lett. 2017 Mar 8;17(3):1326–1335. https://doi.org/10.1021/acs.nanolett.6b03329

55. Sayour EJ, Grippin A, De Leon G, Stover B, Rahman M, Karachi A, et al. Personalized tumor RNA loaded lipid-nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy. Nano Lett. 2018 Oct 10;18(10):6195–6206. https://doi.org/10.1021/acs.nanolett.8b02179

56. Dörrie J, Schaft N, Schuler G, Schuler-Thurner B. Therapeutic cancer vaccination with ex vivo RNA-transfected dendritic cells – An update. Pharmaceutics. 2020;12(2):92. https://doi.org/10.3390/pharmaceutics12020092

57. Mendez-Gomez HR, DeVries A, Castillo P, von Roemelingvon C, Qdaisat S, Stover BD, et al. RNA aggregates harness the danger response for potent cancer immunotherapy. Cell. 2024;187(10):2521–2535. https://doi.org/10.1016/j.cell.2024.04.003

58. Wu J, Waxman DJ. Immunogenic chemotherapy: dose and schedule dependence and combination with immunotherapy. Cancer Lett. 2018;419:210–221. https://doi.org/10.1016/j.canlet.2018.01.050

59. Zhao B, Yao L, Hatami M, Ma W, Skutella T. Vaccine-based immunotherapy and related preclinical models for glioma. Trends in Molecular Medicine. 2024;30(10):965–981. https://doi.org/10.1016/j.molmed.2024.06.009

60. Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol. 2024 Sep 27;14:1454370. https://doi.org/10.3389/fonc.2024.1454370

61. Hato L, Vizcay A, Eguren I, Pérez-Gracia JL, Rodríguez J, Gállego Pérez-Larraya J, et al. Dendritic cells in cancer immunology and immunotherapy. Cancers (Basel). 2024 Feb 28;16(5):981. https://doi.org/10.3390/cancers16050981


Review

For citations:


Goroshinskaya I.A., Frantsiyants E.M., Kaplieva I.V., Surikova E.I., Bandovkina V.A., Ushakova N.D., Filippova S.Yu., Mezhevova I.V., Rostorguev E.E., Kuznetsova N.S., Kavitskiy S.E. Possibilities of vaccine therapy for the treatment of glioblastoma. Research and Practical Medicine Journal. 2025;12(3):71-86. (In Russ.) https://doi.org/10.17709/2410-1893-2025-12-3-7

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)