Preview

Research and Practical Medicine Journal

Advanced search

The preliminary diffusion tensor imaging study of cerebral microstructure in the acute phase of brain concussion

https://doi.org/10.17709/2409-2231-2019-6-4-10

Abstract

Purpose of the study. Concussion does not cause any lesions available for visualization using computed tomography and magnetic resonance imaging. However, it can cause changes at the microstructural level, which can be detected by the diffusion-tensor imaging. The purpose of this study is to identify the effect of acute concussion on diffusion parameters in the corpus callosum, corticospinal tract, and thalamus in children.

Patients and methods. Fractional anisotropy and the apparent diffusion coefficient were determined in 11 patients with a diagnosis of concussion (41 ± 19 hours from the moment of injury) and in 11 healthy subjects. Philips Achieva dStream 3T magnetic resonance imager was used. Diffusion tensor imaging data were processed in the Philips Intellispace Portal program in the Fibertrack section.

Results. Fractional diffusion anisotropy significantly increases and the apparent diffusion coefficient decreases in the thalamus of patients with concussion. In corpus callosum there is a growth trend in fractional anisotropy.

Conclusion. The detected changes indicate the initial stage of cell edema in the thalamus caused by concussion. Diffusion-tensor imaging is the only magnetic resonance imaging method which may be sensitive to this pathology.

About the Authors

A. V. Manzhurtsev
Research Institute of Emergency Pediatric Surgery and Traumatology; N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Russian Federation

Andrey V. Manzhurtsev - scientific researcher Research Institute of Emergency Pediatric Surgery and Traumatology; junior scientific researcher N. M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences.

22 Bolshaya Polyanka str., Moscow 119180; 4 Kosygina str., Moscow 119334.



O. R. Vasyukova
Research Institute of Emergency Pediatric Surgery and Traumatology
Russian Federation

Olga R. Vasyukova - student, Research Institute of Emergency Pediatric Surgery and Traumatology.

22 Bolshaya Polyanka str., Moscow 119180.



P. E. Menshchikov
N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences; Philips Healthcare
Russian Federation

Peter E. Menshchikov - candidate of physical and mathematical Sciences, specialist in support of scientific projects Philips Healthcare, junior scientific researcher N.N.Semenova Federal Research Center of Chemical Physics of the Russian Academy of Sciences.

4 Kosygina str., Moscow 119334; 13 Sergei Makeev str., Moscow 123022.



M. V. Ublinskiy
Research Institute of Emergency Pediatric Surgery and Traumatology; N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences
Russian Federation

Maxim V. Ublinskiy - PhD (Biology), scientific researcher Research Institute of Emergency Pediatric Surgery and Traumatology; scientific researcher N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences.

22 Bolshaya Polyanka str., Moscow 119180; 4 Kosygina str., Moscow 1 19334.



I. A. Melnikov
Research Institute of Emergency Pediatric Surgery and Traumatology
Russian Federation

Ilya A. Melnikov - radiologist, Research Institute of Emergency Pediatric Surgery and Traumatology.

22 Bolshaya Polyanka str., Moscow 119180.



T. A. Akhadov
Research Institute of Emergency Pediatric Surgery and Traumatology
Russian Federation

Tolibjon A. Akhadov - MD, PhD, DSc, Professor, headmaster of radiological department Research Institute of Emergency Pediatric Surgery and Traumatology.

22 Bolshaya Polyanka str., Moscow 119180.



N. A. Semenova
Research Institute of Emergency Pediatric Surgery and Traumatology; N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences; N.N.Semenova Federal Research Center of Chemical Physics of the Russian Academy of Sciences
Russian Federation

Nataliya A. Semenova - PhD, DSc (Biology), chief scientific researcher Research Institute of Emergency Pediatric Surgery and Traumatology; chief scientific researcher N.M.Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences; chief scientific researcher N.N.Semenova Federal Research Center of Chemical Physics of the Russian Academy of Sciences.

22 Bolshaya Polyanka str., Moscow 119180; 4 Kosygina str., Moscow 119334; 4 Kosygina str., Moscow 119991.



References

1. Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease. Mol Cell Neurosci. 2015; 66:75-80. DOI: 10.1016/j.mcn.2015.03.001

2. Polinder S, Cnossen MC, Real RGL, Covic A, Gorbunova A, Voormolen DC, et al. A Multidimensional Approach to Post-concussion Symptoms in Mild Traumatic Brain Injury. Front Neurol. 2018; 9:1113. DOI: 10.3389/fneur.2018.01113

3. McCrea M, Iverson GL, McAllister TW, Hammeke TA, Powell MR, Barr WB, et al. An integrated review of recovery after mild traumatic brain injury (MTBI): implications for clinical management. Clin Neuropsychol. 2009 Nov;23(8):1368-1390. DOI: 10.1080/13854040903074652.

4. Babcock L, Yuan W, Leach J, Nash T, Wadec S. White matter alterations in youth with acute mild traumatic brain injury. J Pediatr Rehabil Med. 2015; 8(4):285-296. DOI: 10.3233/PRM-150347

5. Chu Z, Wilde EA, Hunter JV, McCauley SR, Bigler ED, Troyanskaya M, et al. Voxel-Based Analysis of Diffusion Tensor Imaging in Mild Traumatic Brain Injury in Adolescents. AJNR Am J Neuroradiol. 2010 Feb; 31(2):340-346. DOI: 10.3174/ajnr.A1806

6. Henry LC, Tremblay J, Tremblay S, Lee A, Brun C, Lepore N, et al. Acute and chronic changes in diffusivity measures after sports concussion. J Neurotrauma. 2011 Oct; 28(10):2049-2059. DOI: 10.1089/neu.2011.1836

7. Granziera C, Daducci A, Romascano D, Roche A, Helms G, Krueger G, et al. Structural abnormalities in the thalamus of migraineurs with aura: a multiparametric study at 3 T. Hum Brain Mapp. 2014 Apr; 35(4):1461-1468. DOI: 10.1002/hbm.22266

8. Little DM, Kraus MF, Joseph J, Geary EK, Susmaras T, Zhou XJ, et al. Thalamic integrity underlies executive dysfunction in traumatic brain injury. Neurology. 2010 Feb 16; 74(7):558-564. DOI: 10.1212/WNL.0b013e3181cff5d5

9. Lei D, Li L, Li Lei, Suo X, Huang X, Lui S, et al. Microstructural Abnormalities in Children with Post-traumatic Stress Disorder: A Diffusion Tensor Imaging Study at 3.0T. Sci Rep. 2015 Mar 11; 5 (1):1-6. DOI: 10.1038/srep08933

10. Grossman EJ, Ge Y, Jensen JH, Babb JS, Miles L, Reaume J, et al. Thalamus and cognitive impairment in mild traumatic brain injury: a diffusional kurtosis imaging study. J Neurotrauma. 2012 Sep; 29(13):2318-2327. DOI: 10.1089/neu.2011.1763

11. Mayer AR, Ling J, Mannell MV, Gasparovic C, Phillips JP, Doezema D, et al. A prospective diffusion tensor imaging study in mild traumatic brain injury. Neurology. 2010 Feb 23; 74(8):643-650. DOI: 10.1212/WNL.0b013e3181d0ccdd

12. Duan Y, Li X, Xi Y. Thalamus Segmentation from Diffusion Tensor Magnetic Resonance Imaging. Int J Biomed Imaging. 2007; 2007:90216. DOI: 10.1155/2007/90216

13. Shenton ME, Hamoda HM, Schneiderman JS, Bouix S, Pasternak O, Rathi Y, et al. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury. Brain Imaging Behav. 2012 Jun; 6(2):137-192. DOI: 10.1007/s11682-012-9156-5

14. D'souza MM, Trivedi R, Singh K, Grover H, Choudhury A, Kaur P, et al. Traumatic brain injury and the post-concussion syndrome: A diffusion tensor tractography study. Indian J Radiol Imaging. 2015 Dec; 25(4):404-414. DOI: 10.4103/0971-3026.169445

15. Wu T, Merkley TL, Wilde EA, Barnes A, Li X, Chu ZD, et al. A preliminary report of cerebral white matter microstructural changes associated with adolescent sports concussion acutely and subacutely using diffusion tensor imaging. Brain Imaging and Behavior. 2018 Aug 1; 12(4):962-973. DOI: 10.1007/s11682-017-9752-5

16. Huisman TA, Schwamm LH, Schaefer PW, Koroshetz WJ, Shetty-Alva N, Ozsunar Y, et al. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am J Neuroradiol. 2004 Mar; 25(3):370-376.

17. Veeramuthu V, Narayanan V, Kuo TL, Delano-Wood L, Chinna K, Bondi MW, et al. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study. J Neurotrauma. 2015 Oct 1; 32(19):1497—1509. DOI: 10.1089/neu.2014.3750

18. Hudak AM, Peng L, Marquez de la Plata C, Thottakara J, Moore C, Harper C, et al. Cytotoxic and vasogenic cerebral oedema in traumatic brain injury: assessment with FLAIR and DWI imaging. Brain Injury 2014;28(12):1602-1609. DOI: 10.3109/02699052.2014.936039

19. Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. Diffusion tensor MR imaging of the human brain. Radiology. 1996 Dec; 201(3):637—648. DOI: 10.1148/radiology.201.3.8939209

20. Bickler PE, Donohoe PhJ. Adaptive responses of vertebrate neurons to hypoxia. J Exp Biol. 2002 Dec; 205(Pt 23):3579-3586.

21. Grossman EJ, Ge Y, Jensen JH, Babb JS, Miles L. Thalamus and Cognitive Impairment in Mild Traumatic Brain Injury: A Diffusional Kurtosis Imaging Study. J Neurotrauma. 2012; 29(13):2318-2327. DOI: 10.1089/neu.2011.1763


Review

For citations:


Manzhurtsev A.V., Vasyukova O.R., Menshchikov P.E., Ublinskiy M.V., Melnikov I.A., Akhadov T.A., Semenova N.A. The preliminary diffusion tensor imaging study of cerebral microstructure in the acute phase of brain concussion. Research and Practical Medicine Journal. 2019;6(4):102-108. (In Russ.) https://doi.org/10.17709/2409-2231-2019-6-4-10

Views: 1031


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)