Data analysis of high-throughput sequencing and microarray to identify key signatures of microribonucleic acids in glioblastoma
https://doi.org/10.17709/2410-1893-2021-8-3-2
Abstract
Purpose of the study. This research was devoted to study of mRNA and miRNA expression patterns in glioglastomas using The Cancer Genome Atlas (TCGA) data, to search for genetic determinants that determine the prognosis of patient survival and to create of interaction networks for glioblastomas.
Materials and methods. Based on the data of the open TCGA database groups of glioblastomas and conventionally normal brain tissue samples were formed. Survival gene and miRNA expression data were extracted for each sample. After the data stratification by groups the differential expression analysis and search the genes affecting patient survival was carried out. The enrichment analysis by functional affiliation and an interactome analysis were performed.
Results. A total of 156 glioblastoma samples with mRNA sequencing data, 571 samples with microarray microRNA analysis data, and 15 control samples were analyzed. Networks of mRNA-miRNA interactions were built and expression profiles of genes and miRNAs characteristic of glioblastomas were developed. We have determined the genes which aberrant level is associated with survival and shown the pairwise DEG and DE of microRNA correlations.
Conclusion. The microRNA-mRNA regulatory pairs identified for glioblastomas can stimulate the development of new therapeutic approaches based on subtype-specific regulatory mechanisms of oncogenesis.
About the Authors
A. A. PushkinRussian Federation
Anton A. Pushkin – Researcher, Laboratory of Molecular Oncology, SPIN: 9223-1871, AuthorID: 975797, ResearcherID: AAA-8887-2020, Scopus Author ID: 57200548010
63 14 line str., Rostov-on-Don 344037
Competing Interests:
Аuthors report no conflict of interest
E. A. Dzenkova
Russian Federation
Elena A. Dzhenkova – Dr. Sci. (Biol.), Associate Professor, academic secretary, SPIN: 6206-6222, AuthorID: 697354, ResearcherID: K-9622-2014, Scopus Author ID: 6507889745
63 14 line str., Rostov-on-Don 344037
Competing Interests:
Аuthors report no conflict of interest
N. N. Timoshkina
Russian Federation
Natalya N. Timoshkina – Cand. Sci. (Biol.), Head of the Laboratory Molecular Oncology, SPIN: 9483-4330, AuthorID: 633651, ResearcherID: D-3876-2018, Scopus Author ID: 24077206000
63 14 line str., Rostov-on-Don 344037
Competing Interests:
Аuthors report no conflict of interest
D. Yu. Gvaldin
Russian Federation
Dmitry Yu. Gvaldin – Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Oncology, SPIN: 8426-9283, AuthorID: 1010353, ResearcherID: AAA-9894-2020, Scopus Author ID: 57195716861
63 14 line str., Rostov-on-Don 344037
Competing Interests:
Аuthors report no conflict of interest
References
1. Pushkin A.A., Timoshkina N.N., Rostorguev E.E. Expression status of 15 genes in glial brain tumors. Research and practice in medicine. 2019; 6 (S): 230. (In Russian)
2. Kit O. I., Pushkin A.A. Rostorguev E.E., Porksheyan D. Kh., Franjants E.M., Kuznetsova N.S., et al. Changes in the expression status of genes during malignancy of brain cells. Modern problems of science and education. 2018; (6): 8. doi: 10.17513/spno.28148. (In Russian).
3. Kit O. I., Pushkin A.A., Rostorguev E.E., Porksheyan D. Kh., Frantsyants E. M., Kuznetsova N. S., et al. Gender characteristics of expression of genetic loci in glioma tissues. Modern problems of science and education. 2018; (5): 57.doi: 10.17513/spno.28068. (In Russian).
4. Ignatov S.N., Zlatnik E.Yu., Sagakyants A.B., Soldatkina N.V., Rostorguev E.E., Pushkin A.A. Predictor role of the local level of interleukin-1β in the choice of chemotherapy in patients with poorly differentiated glial tumors. VI St. Petersburg International Oncological Forum "White Nights 2020"; June 25-28, 2020, St. Petersburg. Available at: https://forum-onco.ru/upload/unsorted/forum_tezis_2020.pdf. Accessed: 01.11.2020. (In Russian).
5. Calin G. A., Dumitru C. D., Shimizu M., Bichi R., Zupo S., Noch, E., et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the national academy of sciences. 2002; 99(24): 15524-15529. doi:10.1073/pnas.242606799.
6. Li G., Wu X., Qian W., Cai H., Sun, X., Zhang, W., et .al. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance. Cell research. 2016; 26(6): 655-673. doi: 10.1038/cr.2016.32.
7. Cai Y., Yu X., Hu S., Yu J. A brief review on the mechanisms of miRNA regulation. Genomics, proteomics & bioinformatics. 2009; 7(4): 147-154. doi: 10.1016/S1672-0229(08)60044-3.
8. Kit O.I., Pushkin A.A., Rostorguev E.E., Timoshkina N.N., Kuznetsova N.S., Kavitsky S.E., et al. Differential expression of 15 genes in glial tumors of various degrees malignancy. Modern problems of science and education. 2019; (5): 66-66. doi: 10.17513/spno.29039. (In Russian).
9. Vodolazhsky D.I., Pushkin A.A., Vasilchenko N.G., Panchenko S.B., Timoshkina N.N. Effect of doxorubicin on gene expression and miRNA of the EGFR signaling pathway in HeLa cell culture. Malignant tumors. 2017; 7 (3-S1): 124-125. (In Russian).
10. Pushkin A. A., Burda Y. E., Sevast’Yanov A. A., Kulikovskiy V. F., Burda S. Y., Golubinskaya P. A., et al. Renal cell carcinoma drug and cell therapy: today and tomorrow. Research Results in Pharmacology. 2018; 4(1):17-26. doi: 10.3897/rrpharmacology 4.25251.
11. Shkurat T. P., Pushkin A. A., Kozlova M. Yu., Kolina E. A., Pokudina I. O. Bioinformatic study of miRNA regulators of tumor suppressor genes. VI International scientific-practical conference "Actual problems of biology, nanotechnology and medicine"; 01-03 October 2015, Rostov-on-Don. Available at: https://istina.msu.ru/download/12276529/1gNlOn:PSoS6rTJMPtnBguMNG2YAiY5JF8/. Accessed: 05.11.2020. (In Russian).
12. Rospatent. Registered on 29.11.2018. Patent number RU2709651C1. Kit O. I., Timoshkina N. N., Pushkin A. A., Kutilin D. S., Rostorguev E. E., Kuznetsova N. S. Method for differential diagnosis of gliomas based on analysis of gene expression and micro-RNA. (In Russian).
13. Colaprico A., Silva T. C., Olsen C., Garofano L., Cava C., Garolini D., et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic acids research. 2016; 44(8): 71. doi:10.1093/nar/gkv1507.
14. Ru Y., Kechris K. J., Tabakoff B., Hoffman P., Radcliffe R. A., Bowler R., et al. The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic acids research. 2014; 42(17): 133. doi:10.1093/nar/gku631
15. He Q., Fang Y., Lu F., Pan J., Wang L., Gong W., et al. Analysis of differential expression profile of miRNA in peripheral blood of patients with lung cancer. Journal of Clinical Laboratory Analysis. 2019: 33(9): 23003. doi: 10.1002/jcla.23003.
16. Wu D., Niu X., Tao J., Li P., Lu Q., Xu A., et al. MicroRNA-379-5p plays a tumor-suppressive role in human bladder cancer growth and metastasis by directly targeting MDM2. Oncology Reports 2017; 37(6): 3502-3508. doi: 10.3892/or.2017.5607.
17. Lv X., Wang M., Qiang J., Guo S. Circular RNA circ-PITX1 promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-379–5p/MAP3K2 axis. European journal of pharmacology. 2019; 863:172643. doi: 10.1016/j.ejphar.2019.172643.
18. Kumar R., DuMond J. F., Khan S. H., Thompson E. B., He Y., Burg M. B., et al. NFAT5, which protects against hypertonicity, is activated by that stress via structuring of its intrinsically disordered domain. Proceedings of the National Academy of Sciences. 2020; 117(33): 20292-20297. doi: 10.1073/pnas.1911680117.
19. Li Y., Yuan F., Song Y., Guan, X. MiR‑17‑5p and miR‑19b‑3p prevent osteoarthritis progression by targeting EZH2. Experimental and therapeutic medicine. 2020; 20(2): 1653-1663. doi: 10.3892/etm.2020.8887.
20. Pellatt D. F., Stevens J. R., Wolff R. K., Mullany L. E., Herrick J. S., Samowitz W., et al. Expression profiles of miRNA subsets distinguish human colorectal carcinoma and normal colonic mucosa. Clinical and translational gastroenterology. 2016; 7(3): 152. doi: 10.1038/ctg.2016.11.
21. Ye S. B., Li Z. L., Luo D. H., Huang B. J., Chen Y. S., Zhang X. S., et al. Tumor-derived exosomes promote tumor progression and T-cell dysfunction through the regulation of enriched exosomal microRNAs in human nasopharyngeal carcinoma. Oncotarget. 2014; 5(14):5439. doi: 10.18632/oncotarget.2118.
22. Wei J., Yin Y., Deng Q., Zhou J., Wang Y., Yin G., et al. Integrative Analysis of MicroRNA and Gene Interactions for Revealing Candidate Signatures in Prostate Cancer. Frontiers in Genetics. 2020; 11: 176. doi: 10.3389/fgene.2020.00176. doi: 10.3892/ol.2017.6769.
23. Zhang H., Xu S., Liu X. MicroRNA profiling of plasma exosomes from patients with ovarian cancer using high‑throughput sequencing. Oncology letters. 2019; 17(6): 5601-5607. doi: 10.3892/ol.2019.10220.
24. Zhang J., Li Y., Dong M., & Wu D. Long non‑coding RNA NEAT1 regulates E2F3 expression by competitively binding to miR‑377 in non‑small cell lung cancer. Oncology letters. 2017; 14(4): 4983-4988. doi: o10.3892/ol.2017.6769
25. Jiang X. M., Yu X. N., Liu T. T., Zhu H. R., Shi X., Bilegsaikhan, et al. MicroRNA-19a-3p promotes tumor metastasis and chemoresistance through the PTEN/Akt pathway in hepatocellular carcinoma. Biomedicine & Pharmacotherapy. 2018; 105: 1147-1154. doi: 10.1016/j.biopha.2018.06.097
26. Pushkin A. A., Kit O. I. Clinical significance of gene expression patterns in glioblastomas. Congress of Young Scientists "Topical Issues of Fundamental and Clinical Medicine"; May 24-25, 2018, Tomsk. Available at: http://tnimc.ru/upload/publications/proceedings/2018_young.pdf. Accessed: 05.11.2020. (In Russian).
27. Liu Q., Wang, J., Tang M., Chen L., Qi X., Li J., et al. The overexpression of PXN promotes tumor progression and leads to radioresistance in cervical cancer. Future Oncology. 2018; 14(3): 241-253. doi: 10.2217/fon-2017-0474.
28. Fan M., Ma X., Wang F., Zhou Z., Zhang J., Zhou D., et al. MicroRNA-30b-5p functions as a metastasis suppressor in colorectal cancer by targeting Rap1b. Cancer Letters. 2020; 477: 144-156.
Supplementary files
Review
For citations:
Pushkin A.A., Dzenkova E.A., Timoshkina N.N., Gvaldin D.Yu. Data analysis of high-throughput sequencing and microarray to identify key signatures of microribonucleic acids in glioblastoma. Research and Practical Medicine Journal. 2021;8(3):21-33. (In Russ.) https://doi.org/10.17709/2410-1893-2021-8-3-2