Preview

Research and Practical Medicine Journal

Advanced search

On mechanisms of antitumor action of tropolon series compounds

https://doi.org/10.17709/2410-1893-2021-8-3-11

Abstract

The review provides information on the mechanisms of the antitumor action of natural and synthetic compounds of the tropolone series, obtained over the past 30 years in studies on cell cultures and, to a lesser extent, in in vivo experiments. Interest in this group of substances is due to the urgent need of clinical oncology for drugs that effectively damage malignant cells and, at the same time, are safe for healthy tissues. The processes that realize the effects of colchicine, hinokithiol (ß-tuyaplicin) and some of their derivatives (derivatives of bistropolone, α-substituted tropolones, etc.) have been studied most fully. Herewith, more numerous mechanisms of realization of the antitumor effect of hinokithiol and its derivatives were revealed in comparison with colchicine. In addition to the disruption in the formation of the cell division spindle, shown for colchicine and colchamine, such phenomena as caspase-dependent apoptosis and some other types of apoptosis, autophagy, limitation of mitochondrial metabolism, DNA damage and demethylation, and accelerated aging of malignant cells etc. have been described. The promising properties of 2‑quinolyl 1,3‑tropolone derivatives have been shown, and the relationship of their antitumor effect with the induction of apoptosis and changes in the activity of the ERK signaling pathway in some types of malignant cells have been revealed. The results indicate a multiplicity of possible ways of the influence of tropolones on the state of malignant cells, the conditions for the implementation of ones need to be clarified, especially with a lack of information about in vivo processes.

The review includes information from the literature presented in the Scopus, WoS, Pubmed databases. 35 % of articles have been published in the last 5 years.

About the Authors

G. V. Zhukova
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Galina V. Zhukova – Dr. Sci. (Biol.), senior researcher at the testing laboratory center, SPIN: 1887-7415, AuthorID: 564827, Researcher ID: Y-4243-2016, Scopus Author ID: 7005456284

63 14 line str., Rostov-on-Don 344037


Competing Interests:

Аuthors report no conflict of interest



E. A. Lukbanova
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Ekaterina A. Lukbanova – researcher at the testing laboratory center, SPIN: 4078-4200, AuthorID: 837861, Scopus Author ID: 57215860146

63 14 line str., Rostov-on-Don 344037


Competing Interests:

Аuthors report no conflict of interest



T. P. Protasova
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Tatyana P. Protasova – Cand. Sci. (Biol.), researcher at the testing laboratory center, SPIN: 4542-3588, AuthorID: 760427

63 14 line str., Rostov-on-Don 344037


Competing Interests:

Аuthors report no conflict of interest



E. V. Zaikina
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Ekaterina V. Zaikina – junior researcher at the testing laboratory center, SPIN: 4000-4369, AuthorID: 1045258

63 14 line str., Rostov-on-Don 344037


Competing Interests:

Аuthors report no conflict of interest



A. A. Kiblitskaya
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Aleksandra A. Kiblitskaya – researcher at the testing laboratory center 

63 14 line str., Rostov-on-Don 344037


Competing Interests:

Аuthors report no conflict of interest



References

1. Qu N, Itoh M, Sakabe K. Effects of Chemotherapy and Radiotherapy on Spermatogenesis: The Role of Testicular Immunology. Int J Mol Sci. 2019 Feb 22;20(4):957. https://doi.org/10.3390/ijms20040957

2. Damia G, Broggini M. Platinum Resistance in Ovarian Cancer: Role of DNA Repair. Cancers (Basel). 2019 Jan 20;11(1):119. https://doi.org/10.3390/cancers11010119

3. Varricchi G, Ameri P, Cadeddu C, Ghigo A, Madonna R, Marone G, et al. Antineoplastic Drug-Induced Cardiotoxicity: A Redox Perspective. Front Physiol. 2018;9:167. https://doi.org/10.3389/fphys.2018.00167

4. Kit OI, Shikhlyarova AI, Zhukova GV, Maryanovskaya GY, Barsukova LP, Korobeinikova EP, et al. Activation therapy: theoretical and applied aspects. Cardiometry. 2015;7:22–29. (In Russian). https://doi.org/10.12710/cardiometry.2015.7.2229

5. Sagakyants A.B. United immunological forum: current trends in the development of fundamental and applied oncoimmunology (Novosibirsk, 2019). South Russian Journal of Cancer. 2020;1(2):36-45. (In Russian). https://doi.org/10.37748/2687-0533-2020-1-2-5

6. Lloyd D. Carbocyclic Non-Benzenoid Aromatic Compounds. Elsevier. Amsterdam-London-New-York. 1966, 220 p.

7. Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006 Dec 8;351(1):26–32. https://doi.org/10.1016/j.bbrc.2006.09.166

8. Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203

9. Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the antiproliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018

10. Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activity of [benzo[b][1,4]oxazepino[7,6,5-de] quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015 Mar 1;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2

11. Tkachev VV, Sayapin YuA, Tupaeva IO, Gusakov EA, Shilov GV, Aldoshin SM, et al. Structure of 2-(benzoxazole-2-Yl)- 5,7-di(tert-butyl)-4-nitro-1,3-tropolone. J Struct Chem. 2018 Jan 1;59(1):197–200. https://doi.org/10.1134/S0022476618010316

12. Zhao J. Plant troponoids: chemistry, biological activity, and biosynthesis. Curr Med Chem. 2007;14(24):2597–2621. https://doi.org/10.2174/092986707782023253

13. Shih Y-H, Chang K-W, Hsia S-M, Yu C-C, Fuh L-J, Chi T-Y, et al. In vitro antimicrobial and anticancer potential of hinokitiol against oral pathogens and oral cancer cell lines. Microbiol Res. 2013 Jun 12;168(5):254–262. https://doi.org/10.1016/j.micres.2012.12.007

14. Elagawany M, Hegazy L, Cao F, Donlin MJ, Rath N, Tavis J, et al. Identification of 4-isopropyl–thiotropolone as a novel anti-microbial: regioselective synthesis, NMR characterization, and biological evaluation. RSC Adv. 2018 Aug 20;8(52):29967– 29975. https://doi.org/10.1126/science.2475911

15. Çankaya N, Bulduk İ, Çolak AM. Extraction, development and validation of HPLC-UV method for rapid and sensitive determination of colchicine from Colchicum autumnale L. Bulbs. Saudi J Biol Sci. 2019 Feb;26(2):345–351. https://doi.org/10.1016/j.sjbs.2018.10.003

16. Bhattacharyya B, Panda D, Gupta S, Banerjee M. Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Med Res Rev. 2008 Jan;28(1):155–183. https://doi.org/10.1002/med.20097

17. Alkadi H, Khubeiz MJ, Jbeily R. Colchicine: A Review on Chemical Structure and Clinical Usage. Infect Disord Drug Targets. 2018;18(2):105–121. https://doi.org/10.2174/1871526517666171017114901

18. Burbaeva GSh, Androsova LV, Savushkina OK. Binding of colchicine to tubulin in the brain structuresin normal conditions and in schizophrenia. Neurochemical Journal. 2020;37(2):183– 187. (In Russian). https://doi.org/10.31857/S1027813320010069

19. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008-5472.CAN-10-2429

20. Lin Z-Y, Kuo C-H, Wu D-C, Chuang W-L. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci. 2016 Feb;32(2):68–73. https://doi.org/10.1016/j.kjms.2015.12.006

21. Kurek J, Kwaśniewska-Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583

22. Florian S, Mitchison TJ. Anti-Microtubule Drugs. Methods Mol Biol. 2016;1413:403–421. https://doi.org/10.1007/978-1-4939-3542-0_25

23. Matsumura E, Morita Y, Date T, Tsujibo H, Yasuda M, Okabe T, et al. Cytotoxicity of the hinokitiol-related compounds, gamma-thujaplicin and beta-dolabrin. Biol Pharm Bull. 2001 Mar;24(3):299–302. https://doi.org/10.1248/bpb.24.299

24. Maksimov AYu, Lukbanova EA, Sayapin YA, Gusakov EA, Goncharova AS, Lysenko IB, et al. Anticancer activity of tropolone alkaloids in vitro and in vivo. Modern problems of science and education. 2020;(2)169. (In Russian).

25. Lee Y-S, Choi K-M, Kim W, Jeon Y-S, Lee Y-M, Hong J-T, et al. Hinokitiol inhibits cell growth through induction of S-phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135

26. Seo JS, Choi YH, Moon JW, Kim HS, Park S-H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860-017-0130-3

27. Chen S-M, Wang B-Y, Lee C-H, Lee H-T, Li J-J, Hong G-C, et al. Hinokitiol up-regulates miR-494-3p to suppress BMI1 expression and inhibits self-renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648

28. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β-Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS-mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419-019-1492-6

29. Morita Y, Matsumura E, Tsujibo H, Yasuda M, Okabe T, Sakagami Y, et al. Biological activity of 4-acetyltropolone, the minor component of Thujopsis dolabrata SIeb. et Zucc. hondai Mak. Biol Pharm Bull. 2002 Aug;25(8):981–985. https://doi.org/10.1248/bpb.25.981

30. Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase-3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365-2184.1999.3210063.x

31. Li L-H, Wu P, Lee J-Y, Li P-R, Hsieh W-Y, Ho C-C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib-resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203

32. Zhang L, Peng Y, Uray IP, Shen J, Wang L, Peng X, et al. Natural product β-thujaplicin inhibits homologous recombination repair and sensitizes cancer cells to radiation therapy. DNA Repair (Amst). 2017 Dec;60:89–101. https://doi.org/10.1016/j.dnarep.2017.10.009

33. Liu S, Yamauchi H. Hinokitiol, a metal chelator derived from natural plants, suppresses cell growth and disrupts androgen receptor signaling in prostate carcinoma cell lines. Biochem Biophys Res Commun. 2006 Dec 8;351(1):26–32. https://doi.org/10.1016/j.bbrc.2006.09.166

34. Tu D-G, Yu Y, Lee C-H, Kuo Y-L, Lu Y-C, Tu C-W, et al. Hinokitiol inhibits vasculogenic mimicry activity of breast cancer stem/progenitor cells through proteasome-mediated degradation of epidermal growth factor receptor. Oncol Lett. 2016 Apr;11(4):2934–2940. https://doi.org/10.3892/ol.2016.4300

35. Huang C-H, Jayakumar T, Chang C-C, Fong T-H, Lu S-H, Thomas PA, et al. Hinokitiol Exerts Anticancer Activity through Downregulation of MMPs 9/2 and Enhancement of Catalase and SOD Enzymes: In Vivo Augmentation of Lung Histoarchitecture. Molecules. 2015 Sep 25;20(10):17720–17734. https://doi.org/10.3390/molecules201017720

36. Tsao Y-T, Huang Y-F, Kuo C-Y, Lin Y-C, Chiang W-C, Wang W-K, et al. Hinokitiol Inhibits Melanogenesis via AKT/mTOR Signaling in B16F10 Mouse Melanoma Cells. Int J Mol Sci. 2016 Feb 18;17(2):248. https://doi.org/10.3390/ijms17020248

37. Ahn J-H, Woo J-H, Rho J-R, Choi J-H. Anticancer Activity of Gukulenin A Isolated from the Marine Sponge Phorbas gukhulensis In Vitro and In Vivo. Mar Drugs. 2019 Feb 21;17(2):126. https://doi.org/10.3390/md17020126

38. Yamato M, Ando J, Sakaki K, Hashigaki K, Wataya Y, Tsukagoshi S, et al. Synthesis and antitumor activity of tropolone derivatives. 7. Bistropolones containing connecting methylene chains. J Med Chem. 1992 Jan 24;35(2):267–273. https://doi.org/10.1021/jm00080a010

39. Ishihara M, Wakabayashi H, Motohashi N, Sakagami H. Quantitative structure-cytotoxicity relationship of newly synthesized tropolones determined by a semiempirical molecular-orbital method (PM5). Anticancer Res. 2010 Jan;30(1):129–133.

40. Ononye SN, Vanheyst MD, Giardina C, Wright DL, Anderson AC. Studies on the antiproliferative effects of tropolone derivatives in Jurkat T-lymphocyte cells. Bioorg Med Chem. 2014 Apr 1;22(7):2188–2193. https://doi.org/10.1016/j.bmc.2014.02.018

41. Li J, Falcone ER, Holstein SA, Anderson AC, Wright DL, Wiemer AJ. Novel α-substituted tropolones promote potent and selective caspase-dependent leukemia cell apoptosis. Pharmacol Res. 2016 Nov;113(Pt A):438–448. https://doi.org/10.1016/j.phrs.2016.09.020

42. Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543

43. Iwatsuki M, Takada S, Mori M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, et al. In vitro and in vivo antimalarial activity of puberulic acid and its new analogs, viticolins A-C, produced by Penicillium sp. FKI-4410. J Antibiot (Tokyo). 2011 Feb;64(2):183–188. https://doi.org/10.1038/ja.2010.124

44. Bang DN, Sayapin YA, Lam H, Duc ND, Komissarov VN. Synthesis and cytotoxic activity of [benzo[b][1,4]oxazepino[7,6,5-de] quinolin-2-yl]-1,3-tropolones. Chem Heterocycl Comp. 2015;51(3):291–294. https://doi.org/10.1007/s10593-015-1697-2

45. Gusakov EA, Topchu IA, Mazitova AM, Dorogan IV, Bulatov ER, Serebriiskii IG, et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Adv. 2021;11(8):4555–4571. https://doi.org/10.1039/d0ra10610k

46. Thieffry D. Dynamical roles of biological regulatory circuits. Brief Bioinform. 2007 Jul;8(4):220–225. https://doi.org/10.1093/bib/bbm028


Supplementary files

Review

For citations:


Zhukova G.V., Lukbanova E.A., Protasova T.P., Zaikina E.V., Kiblitskaya A.A. On mechanisms of antitumor action of tropolon series compounds. Research and Practical Medicine Journal. 2021;8(3):118-132. (In Russ.) https://doi.org/10.17709/2410-1893-2021-8-3-11

Views: 1374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)