Preview

Research and Practical Medicine Journal

Advanced search

Study of biological activity of 2-quinoline-2-yl-derivative 1,3-tropolone in experiment

https://doi.org/10.17709/2410-1893-2022-9-2-4

Abstract

Purpose of the study. Was to reveal the antitumor effect of 2‑(6,8‑dimethyl‑5‑nitro‑4‑chloroquinoline‑2‑yl)‑5,6,7‑trichloro‑1,3‑tropolone in subcutaneous PDX models of human lung cancer.

Material and methods. The studied tropolone was synthesized using a method of expanding the o‑quinone cycle. Assess to it’s toxic effects was given by the survival and changes in the health status of female Balb/c Nude mice. Antitumor tropolone effects were studied in subcutaneous patient‑derived xenograft (PDX) models of human squamous cell lung cancer in Balb/c Nude mice. The average volumes of tumor nodes and tumor growth inhibition (TGI %) rate were taken into account. Biochemical blood tests and histological analysis of the tumor material were performed in recipient mice.

Results. An analysis of acute tropolone toxic effects did not reveal the lethal dose. The maximal TGI was observed on day 36 of the experiment in group 5 which have received 2.75 mg/g tropolone and accounted 73.5 % for females and 74.4 % for males. The average tumor volumes in females of this group were 431.3 ± 1,1 mm3 on day 33 of the experiment, in males – 428.9 ± 1,7 mm3 on day 30, and then the tumor volumes declined. The biochemical analysis of blood and histological examination of the tumor tissue of recipient mice reflect the severity of the antitumor effect on the dose of the studied tropolone.

Conclusion. The research demonstrated the antitumor activity of 2‑(6,8‑dimethyl‑5‑nitro‑4‑chloroquinoline‑2‑yl)‑5,6,7‑trichloro‑1,3‑tropolone against subcutaneous PDX models of human NSCLC. The revealed tendencies can be used to search for effective modes of the compound application in clinical practice.

About the Authors

E. A. Lukbanova
National Medical Research Centre for Oncology
Russian Federation

Ekaterina A. Lukbanova – researcher. SPIN: 4078-4200, AuthorID: 837861

63 14 line str., Rostov-on-Don 344037



E. A. Dzhenkova
National Medical Research Centre for Oncology
Russian Federation

Elena A. Dzhenkova – Dr. Sci. (Biol.), associate professor, scientific secretary. SPIN: 6206-6222, AuthorID: 697354, ResearcherID: K-9622-2014, Scopus Author ID: 6507889745

Rostov-on-Don



A. S. Goncharova
National Medical Research Centre for Oncology
Russian Federation

Anna S. Goncharova – Cand. Sci. (Biol.), head of laboratory. SPIN: 7512-2039, AuthorID: 553424

Rostov-on-Don



A. Yu. Maksimov
National Medical Research Centre for Oncology
Russian Federation

Alexei Yu. Maksimov – Dr. Sci. (Med.), professor, deputy general director for advanced scientific research of the department of oncourology. SPIN: 7322-5589, AuthorID: 710705, Scopus Author ID: 56579049500

Rostov-on-Don



E. F. Komarova
National Medical Research Centre for Oncology
Russian Federation

Ekaterina F. Кomarova – professor of Russian Academy of Sciences, Dr. Sci. (Biol.), professor, senior research fellow. SPIN: 1094-3139, AuthorID: 348709, ResearcherID: T-4520-2019

Rostov-on-Don



V. I. Minkin
Research Institute of Physical and Organic Chemistry of the Southern Federal University
Russian Federation

Vladimir I. Minkin – academician of the Russian Academy of Sciences, Dr. Sci. (Chem.), scientific supervisor. SPIN: 1226-7767, AuthorID: 45587

Rostov-on-Don



Yu. A. Sayapin
Southern Scientific Center of the Russian Academy of Sciences
Russian Federation

Yury A. Sayapin – Cand. Sci. (Chem.), head of laboratory. SPIN: 4877-3959, AuthorID: 121929

Rostov-on-Don



E. A. Gusakov
Research Institute of Physical and Organic Chemistry of the Southern Federal University
Russian Federation

Evgeny A. Gusakov – researcher, research institute of physical and organic chemistry. SPIN: 1690-9488, AuthorID: 789745

Rostov-on-Don



L. Z. Kurbanova
National Medical Research Centre for Oncology
Russian Federation

Luiza Z. Kurbanova – junior researcher. SPIN: 9060-4853, AuthorID: 1020533

Rostov-on-Don



A. A. Kiblitskaya
National Medical Research Centre for Oncology
Russian Federation

Alexandra A. Kiblitskaya – researcher. SPIN: 2437-4102, AuthorID: 610872

Rostov-on-Don



E. V. Zaikina
National Medical Research Centre for Oncology
Russian Federation

Ekaterina V. Zaikina – junior researcher. SPIN: 4000-4369, AuthorID: 1045258

Rostov-on-Don



M. V. Mindar
National Medical Research Centre for Oncology
Russian Federation

Maria V. Mindar – junior researcher. SPIN: 5148-0830, AuthorID: 1032029

Rostov-on-Don



M. V. Voloshin
National Medical Research Centre for Oncology
Russian Federation

Mark V. Voloshin – oncologist. SPIN: 6122-4084, AuthorID: 969003

Rostov-on-Don



A. V. Shaposhnikov
National Medical Research Centre for Oncology
Russian Federation

Alexander V. Shaposhnikov – Dr. Sci. (Med.), professor, chief researcher of the thoracoabdominal department. SPIN: 8756-9438, AuthorID: 712823

Rostov-on-Don



I. B. Lysenko
National Medical Research Centre for Oncology
Russian Federation

Irina B. Lysenko – Dr. Sci. (Med.), professor, head of the department of oncohematology. SPIN: 9510-3504, AuthorID: 794669

Rostov-on-Don



N. V. Nikolaeva
National Medical Research Centre for Oncology
Russian Federation

Nadezhda V. Nikolaeva – Dr. Sci. (Med.), oncohematologist. SPIN: 4295-5920, AuthorID: 733869

Rostov-on-Don



References

1. Kit OI, Frantsiyants EM, Menshenina AP, Moiseenko TI, Ushakova ND, Popova NN, et al. Role of plasmapheresis and xenon therapy in correcting the acute effects of surgical menopause in patients with cervical cancer. Polythematic online electronic scientific journal of the Kuban State Agrarian University. 2016;(117):472–486. (In Russ.).

2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018 Nov;68(6):394–424. https://doi.org/10.3322/caac.21492

3. National Cancer Institute. Cancer Stat Facts: Lung and Bronchus Cancer. 2019. Available at: https://seer.cancer.gov/statfacts/html/lungb.html, Accessed: 23.03.2022.

4. Gonzalez‑Rajal A, Hastings JF, Watkins DN, Croucher DR, Burgess A. Breathing New Life into the Mechanisms of Platinum Resistance in Lung Adenocarcinoma. Front Cell Dev Biol. 2020;8:305. https://doi.org/10.3389/fcell.2020.00305

5. Burnasheva EV, Shatokhin YuV, Snezhko IV, Matsuga AA. Kidney injury in cancer therapy. Nephrology (Saint‑Petersburg). 2018;22(5):17–24. (In Russ.). https://doi.org/10.24884/1561‑6274‑2018‑22‑5‑17‑24

6. Kit OI, Shikhlyarova AI, Maryanovskaya GY, Barsukova LP, Kuzmenko TS, Zhukova GV, et al. Theory of health: successful translation into the real life. General biological prerequisites. Cardiometry. 2015;(7):11–17. https://doi.org/10.12710/cardiometry.2015.7.1117

7. Haney SL, Allen C, Varney ML, Dykstra KM, Falcone ER, Colligan SH, et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget. 2017 Sep 29;8(44):76085–76098. https://doi.org/10.18632/oncotarget.18543

8. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β‑Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS‑mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419‑019‑1492‑6

9. Maldonado EN, Patnaik J, Mullins MR, Lemasters JJ. Free tubulin modulates mitochondrial membrane potential in cancer cells. Cancer Res. 2010 Dec 15;70(24):10192–10201. https://doi.org/10.1158/0008‑5472.CAN‑10‑2429

10. Kurek J, Kwaśniewska‑Sip P, Myszkowski K, Cofta G, Barczyński P, Murias M, et al. Antifungal, anticancer, and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019 Sep;94(5):1930–1943. https://doi.org/10.1111/cbdd.13583

11. Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase‑3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365‑2184.1999.3210063.x

12. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β‑Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS‑mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419‑019‑1492‑6

13. Patent of the Russian Federation. RU 2741311 C1. Application No. 2020123736 dated 17.07.20 Minkin VI, Kit OI, Goncharova AS, Lukyanova EA, Sayapin YuA, Gusakov EA., et al. A drug with cytotoxic activity against cell culture of non‑small cell lung cancer A 549. Available at: https://patenton.ru/patent/RU2741311C1.pdf, Accessed: 23.03.2022. (In Russ.).

14. Li L‑H, Wu P, Lee J‑Y, Li P‑R, Hsieh W‑Y, Ho C‑C, et al. Hinokitiol induces DNA damage and autophagy followed by cell cycle arrest and senescence in gefitinib‑resistant lung adenocarcinoma cells. PLoS One. 2014;9(8):e104203. https://doi.org/10.1371/journal.pone.0104203

15. Patent RU No. 2712916, publ. 03.02.2020, Byul. No. 4. Kolesnikov EN, Lukyanova EA, Vanzha LV, Maksimov AYu, Kit SO, Goncharova AS, et al. The method of anesthesia in Balb/c Nude mice during surgical interventions. Available at: https://patenton.ru/patent/RU2712916C1.pdf, Accessed: 23.03.2022. (In Russ.).

16. Treshchalina EM, Zhukova OS, Gerasimova GK, Andronova NV, Garin AM. Methodological guidelines for the study of antitumor activity of pharmacological substances. In: Guidelines for the experimental (preclinical) study of new pharmacological substances. Ed. by Khabrieva RU. Moscow: Medicine, 2005, 637–651 p. (In Russ.).

17. Chibunovsky VA. Interpretation of the results of clinical and biochemical laboratory studies. Almaty, 1998.

18. Zhang G, He J, Ye X, Zhu J, Hu X, Shen M, et al. β‑Thujaplicin induces autophagic cell death, apoptosis, and cell cycle arrest through ROS‑mediated Akt and p38/ERK MAPK signaling in human hepatocellular carcinoma. Cell Death Dis. 2019 Mar 15;10(4):255. https://doi.org/10.1038/s41419‑019‑1492‑6

19. Lukyanova EA, Zaikina EV, Sayapin YuA, Gusakov EA, Filippova SYu, Zlatnik EYu, et al. Assessment of an antitumor effect of 2‑(6,8‑dimethyl‑5‑nitro‑4‑chloroquinoline‑2‑yl)‑5,6,7‑trichloro‑1,3‑tropolone in A‑549 tumor cell subcutaneous xenografts. Almanac of Clinical Medicine. 2021;49(6):396–404. https://doi.org/10.18786/2072‑0505‑2021‑49‑021

20. Zaborovsky AV, Kokorev AV, Brodovskaya EP, Firstov SA, Minaeva OV, Kulikov OA, et al. Targeted delivery of doxorubicin using exogenous biocompatible nanovectors in experimental neoplasias. Bulletin of the Mordovian University. 2017;27(1):93–107. (In Russ.). https://doi.org/10.15507/0236‑2910.027.201701.093‑107

21. Ido Y, Muto N, Inada A, Kohroki J, Mano M, Odani T, et al. Induction of apoptosis by hinokitiol, a potent iron chelator, in teratocarcinoma F9 cells is mediated through the activation of caspase‑3. Cell Prolif. 1999 Feb;32(1):63–73. https://doi.org/10.1046/j.1365‑2184.1999.3210063.x

22. Chen S‑M, Wang B‑Y, Lee C‑H, Lee H‑T, Li J‑J, Hong G‑C, et al. Hinokitiol up‑regulates miR‑494‑3p to suppress BMI1 expression and inhibits self‑renewal of breast cancer stem/progenitor cells. Oncotarget. 2017 Sep 29;8(44):76057–76068. https://doi.org/10.18632/oncotarget.18648

23. Lee Y‑S, Choi K‑M, Kim W, Jeon Y‑S, Lee Y‑M, Hong J‑T, et al. Hinokitiol inhibits cell growth through induction of S‑phase arrest and apoptosis in human colon cancer cells and suppresses tumor growth in a mouse xenograft experiment. J Nat Prod. 2013 Dec 27;76(12):2195–2202. https://doi.org/10.1021/np4005135

24. Seo JS, Choi YH, Moon JW, Kim HS, Park S‑H. Hinokitiol induces DNA demethylation via DNMT1 and UHRF1 inhibition in colon cancer cells. BMC Cell Biol. 2017 Feb 27;18(1):14. https://doi.org/10.1186/s12860‑017‑0130‑3


Supplementary files

Review

For citations:


Lukbanova E.A., Dzhenkova E.A., Goncharova A.S., Maksimov A.Yu., Komarova E.F., Minkin V.I., Sayapin Yu.A., Gusakov E.A., Kurbanova L.Z., Kiblitskaya A.A., Zaikina E.V., Mindar M.V., Voloshin M.V., Shaposhnikov A.V., Lysenko I.B., Nikolaeva N.V. Study of biological activity of 2-quinoline-2-yl-derivative 1,3-tropolone in experiment. Research and Practical Medicine Journal. 2022;9(2):50-64. (In Russ.) https://doi.org/10.17709/2410-1893-2022-9-2-4

Views: 727


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)