Androgens and severity of the new coronavirus infection course
https://doi.org/10.17709/2410-1893-2022-9-2-13
Abstract
The analysis results of work in the conditions of a pandemic of a new coronavirus infection pandemic showed that patients with malignant neoplasms (ZNO) belong to a group of high risk of infection and severe course of this infectious disease. The incidence of COVID‑19 complications in this group of patients is 3.5 times higher than in the general population, which is largely due to the immunosuppressive effect of both oncological diseases themselves and their treatment.
Many attempts have been held to identify and validate other risk factors for severe COVID‑19. Epidemiological data indicate that elderly patients with chronic diseases, including diabetes mellitus (DM), arterial hypertension (AH), obesity, are susceptible to a more severe course of COVID‑19 with a higher frequency of deaths. A number of studies have noted a higher incidence of severe forms of the infectious process and a higher level of COVID‑19‑associated mortality in men. Currently new aspects of the influence of hormonal changes, including iatrogenic ones, on the course of coronavirus infection are being identified. In particular, the data of clinical studies demonstrate a correlation between the level of testosterone in the blood serum and the level of inflammatory cytokines, the features of viral entry into cells, the course of the disease as a whole. This is especially important for understanding the features of the new coronavirus infection in patients with prostate cancer (PC), including for the development of a therapeutic algorithm, indications and contraindications to certain methods of treating PC in a pandemic, as well as ways of additional therapeutic effects when combined with PC and COVID‑19.
The review presents the results of studies on the potential mechanisms of increased susceptibility of men to SARS‑CoV‑2 and discusses the search for new therapeutic targets in COVID‑19, discusses the features of the course of COVID‑19 in patients with PC depending on the level of androgens, including androgen deprivation therapy (ADT).
About the Authors
A. A. GritskevichRussian Federation
Alexander A. Gritskevich – Dr. Sci. (Med.), head of the department of urology; Professor at the Department of Urology and Operative Nephrology with a course of Oncourology. SPIN: 2128-7536, AuthorID: 816947, Scopus Author ID: 57194755867
Moscow
Ya. D. Prokhorova
Russian Federation
Yana D. Prokhorova – resident at the department of endocrinology of the medical faculty
Moscow
T. P. Baitman
Russian Federation
Tatiana P. Baitman – PhD student. SPIN: 4684-3230, AuthorID: 1064032, Scopus Author ID: 57219438104
27 Bolshaya Serpukhovskaya str., Moscow 115093
E. Yu. Gritskevich
Russian Federation
Elena Yu. Gritskevich – Cand. Sci. (Med.), assistant of the department of endocrinology of the medical faculty. SPIN: 4125-2055, AuthorID: 1042992
Moscow
A. A. Kostin
Russian Federation
Andrew A. Kostin – Corresponding Member of RAS, Dr. Sci. (Med.), professor, vice-rector for research, head of the department of urology with courses in oncology, radiology and andrology of the faculty of continuing medical education; first deputy general director. SPIN: 8073-0899, AuthorID: 193454, Scopus Author ID: 16175361500
Moscow
Obninsk
References
1. Malinnikova EYu. New coronaviral infection. Today's look at the pandemic of the XXI century. Infektsionnye bolezni: novosti, mneniya, obuchenie. Infectious Diseases: News, Opinions, Training. 2020;9(2):18–32. (In Russ.). https://doi.org/10.33029/2305‑3496‑2020‑9‑2‑18‑32
2. Seymen CM. The other side of COVID‑19 pandemic: Effects on male fertility. J Med Virol. 2021 Mar;93(3):1396–1402. https://doi.org/10.1002/jmv.26667
3. World Health Organization (WHO). WHO Coronavirus (COVID‑19) Dashboard [Internet]. WHO; 2021. Available at: https://covid19.who.int/, Accessed: 25.04.2022.
4. Belyaev AM, Nosov AK, Ignatova OK, Bairamov KhN, Ryabinin RI, Shchekuteev NA, et al. Oncourology metamorphoses after the first wave of the COVID‑19 pandemic. Experimental and Clinical Urology. 2020;(3):16–24. (In Russ.). https://doi.org/10.29188/2222‑8543‑2020‑12‑3‑16‑24
5. Foresta C, Rocca MS, Di Nisio A. Gender susceptibility to COVID‑19: a review of the putative role of sex hormones and X chromosome. J Endocrinol Invest. 2021 May;44(5):951‑956. https://doi.org/10.1007/s40618‑020‑01383‑6
6. Kaprin AD, Gameeva EV, Polyakov AA, Kornietskaya AL, Rubtsova NA, Fedenko AA. Impact of the COVID‑19 pandemic on the oncological practice. Siberian Journal of Oncology. 2020;19(3):5–22. (In Russ.). https://doi.org/10.21294/1814‑4861‑2020‑19‑3‑5‑22
7. Zhou P P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020 Mar;579(7798):270–273. https://doi.org/10.1038/s41586‑020‑2012‑7
8. Hoffmann M, Kleine‑Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS‑CoV‑2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271–280. https://doi.org/10.1016/j.cell.2020.02.052
9. Lukassen S, Chua RL, Trefzer T, Kahn NC, Schneider MA, Muley T, et al. SARS‑CoV‑2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 2020 May 18;39(10):e105114. https://doi.org/10.15252/embj.20105114
10. Rahman N, Basharat Z, Yousuf M, Castaldo G, Rastrelli L, Khan H. Virtual Screening of Natural Products against Type II Transmembrane Serine Protease (TMPRSS2), the Priming Agent of Coronavirus 2 (SARS‑CoV‑2). Molecules. 2020 May 12;25(10):2271. https://doi.org/10.3390/molecules25102271
11. Montopoli M, Zumerle S, Vettor R, Rugge M, Zorzi M, Catapano CV, et al. Androgen‑deprivation therapies for prostate cancer and risk of infection by SARS‑CoV‑2: a population‑based study (N = 4532). Ann Oncol. 2020 Aug;31(8):1040–1045. https://doi.org/10.1016/j.annonc.2020.04.479
12. Pinato DJ, Zambelli A, Aguilar‑Company J, Bower M, Sng C, Salazar R, et al. Clinical portrait of the SARS‑CoV‑2 epidemic in European cancer patients. Cancer Discov. 2020 Jul 31;10(10):1465–1474. https://doi.org/10.1158/2159‑8290.CD‑20‑0773
13. Cattrini C, Bersanelli M, Latocca MM, Conte B, Vallome G, Boccardo F. Sex Hormones and Hormone Therapy during COVID‑19 Pandemic: Implications for Patients with Cancer. Cancers (Basel). 2020 Aug 18;12(8):2325. https://doi.org/10.3390/cancers12082325
14. Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID‑19 in the New York City Area. JAMA. 2020 May 26;323(20):2052–2059. https://doi.org/10.1001/jama.2020.6775
15. Onder G, Rezza G, Brusaferro S. Case‑Fatality Rate and Characteristics of Patients Dying in Relation to COVID‑19 in Italy. JAMA. 2020 May 12;323(18):1775–1776. https://doi.org/10.1001/jama.2020.4683
16. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020 Apr 30;382(18):1708–1720. https://doi.org/10.1056/NEJMoa2002032
17. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS‑CoV‑2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020 Apr 28;323(16):1574–1581. https://doi.org/10.1001/jama.2020.5394
18. Stall NM, Wu W, Lapointe‑Shaw L, Fisman DN, Giannakeas V, Hillmer MP, et al. Sex‑and Age‑Specific Differences in COVID‑19 Testing, Cases, and Outcomes: A Population‑Wide Study in Ontario, Canada. J Am Geriatr Soc. 2020 Oct;68(10):2188–2191. https://doi.org/10.1111/jgs.16761
19. Lochlainn MN, Lee KA, Sudre CH, Varsavsky T, Cardoso MJ, Menni C, et al. Key predictors of attending hospital with COVID19: An association study from the COVID Symptom Tracker App in 2,618,948 individuals. medRxiv. 2020 Jan 1;2020.04.25.20079251. https://doi.org/10.1101/2020.04.25.20079251
20. Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID‑19 outcomes. Nat Rev Immunol. 2020 Jul;20(7):442–447. https://doi.org/10.1038/s41577‑020‑0348‑8
21. Handelsman DJ, Hirschberg AL, Bermon S. Circulating Testosterone as the Hormonal Basis of Sex Differences in Athletic Performance. Endocr Rev. 2018 Oct 1;39(5):803–829. https://doi.org/10.1210/er.2018‑00020
22. Grossmann M, Ng Tang Fui M, Cheung AS. Late‑onset hypogonadism: metabolic impact. Andrology. 2020 Nov;8(6):1519–1529. https://doi.org/10.1111/andr.12705
23. Assyov Y, Gateva A, Karamfilova V, Gatev T, Nedeva I, Velikova T, et al. Impact of testosterone treatment on circulating irisin in men with late‑onset hypogonadism and metabolic syndrome. Aging Male. 2020 Dec;23(5):1381–1387. https://doi.org/10.1080/13685538.2020.1770721
24. Schroeder M, Schaumburg B, Müller Z, Parplys A, Jarczak D, Nierhaus A, et al. Sex hormone and metabolic dysregulations are associated with critical illness in male Covid‑19 patients. medRxiv. 2020 Jan 1;2020.05.07.20073817. https://doi.org/10.1101/2020.05.07.20073817
25. Shen LW, Qian MQ, Yu K, Narva S, Yu F, Wu YL, et al. Inhibition of Influenza A virus propagation by benzoselenoxanthenes stabilizing TMPRSS2 Gene G‑quadruplex and hence down‑regulating TMPRSS2 expression. Sci Rep. 2020 May 6;10(1):7635. https://doi.org/10.1038/s41598‑020‑64368‑8
26. Piva F, Sabanovic B, Cecati M, Giulietti M. Expression and co‑expression analyses of TMPRSS2, a key element in COVID‑19. Eur J Clin Microbiol Infect Dis. 2021 Feb;40(2):451–455. https://doi.org/10.1007/s10096‑020‑04089‑y
27. Radzikowska U, Ding M, Tan G, Zhakparov D, Peng Y, Wawrzyniak P, et al. Distribution of ACE2, CD147, CD26, and other SARS‑CoV‑2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‑19 risk factors. Allergy. 2020 Nov;75(11):2829–2845. https://doi.org/10.1111/all.14429
28. Kimura H, Francisco D, Conway M, Martinez FD, Vercelli D, Polverino F, et al. Type 2 inflammation modulates ACE2 and TMPRSS2 in airway epithelial cells. J Allergy Clin Immunol. 2020 Jul;146(1):80–88.e8. https://doi.org/10.1016/j.jaci.2020.05.004
29. Tang L, Zhu Q, Wang Z, Shanahan CM, Bensen JT, Fontham ETH, et al. Differential Associations of SLCO Transporters with Prostate Cancer Aggressiveness between African Americans and European Americans. Cancer Epidemiol Biomarkers Prev. 2021 May;30(5):990–999. https://doi.org/10.1158/1055‑9965.EPI‑20‑1389
30. Mohamad NV, Wong SK, Wan Hasan WN, Jolly JJ, Nur‑Farhana MF, Ima‑Nirwana S, et al. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019 Jun;22(2):129–140. https://doi.org/10.1080/13685538.2018.1482487
31. Baldassarri M, Picchiotti N, Fava F, Fallerini C, Benetti E, Daga S, et al. Shorter androgen receptor polyQ alleles protect against life‑threatening COVID‑19 disease in European males. EBioMedicine. 2021 Mar;65:103246. https://doi.org/10.1016/j.ebiom.2021.103246
32. Demidova T.Yu., Volkova E.I., Gritskevich E.Yu. Peculiarities of the COVID‑19 course and consequences in overweight and obese patients. Lessons from the current pandemic. Obesity and metabolism. 2020;17(4):375–384. (In Russ.). https://doi.org/10.14341/omet12663
33. Lapauw B, Kaufman JM. Management of Endocrine Disease: Rationale and current evidence for testosterone therapy in the management of obesity and its complications. Eur J Endocrinol. 2020 Dec;183(6):R167–R183. https://doi.org/10.1530/EJE‑20‑0394
34. Solerte SB, Di Sabatino A, Galli M, Fiorina P. Dipeptidyl peptidase‑4 (DPP4) inhibition in COVID‑19. Acta Diabetol. 2020 Jul;57(7):779–783. https://doi.org/10.1007/s00592‑020‑01539‑z
35. Tanezha V. Sex Hormones Determine Immune Response. Front Immunol. 2018;9:1931. https://doi.org/10.3389/fimmu.2018.01931
36. Reyes‑García J, Montaño LM, Carbajal‑García A, Wang YX. Sex Hormones and Lung Inflammation. Adv Exp Med Biol. 2021;1304:259–321. https://doi.org/10.1007/978‑3‑030‑68748‑9_15
37. Chanana N, Palmo T, Sharma K, Kumar R, Graham BB, Pasha Q. Sex‑derived attributes contributing to SARS‑CoV‑2 mortality. Am J Physiol Endocrinol Metab. 2020 Sep 1;319(3):E562–E567. https://doi.org/10.1152/ajpendo.00295.2020
38. Messina G, Polito R, Monda V, Cipolloni L, Di Nunno N, Di Mizio G, et al. Functional Role of Dietary Intervention to Improve the Outcome of COVID‑19: A Hypothesis of Work. Int J Mol Sci. 2020 Apr 28;21(9):3104. https://doi.org/10.3390/ijms21093104
39. Sun X, Wang T, Cai D, Hu Z, Chen J, Liao H, et al. Cytokine storm intervention in the early stages of COVID‑19 pneumonia. Cytokine Growth Factor Rev. 2020 Jun;53:38–42. https://doi.org/10.1016/j.cytogfr.2020.04.002
40. Papadopoulos V, Li L, Samplaski M. Why does COVID‑19 kill more elderly men than women? Is there a role for testosterone? Andrology. 2021 Jan;9(1):65–72. https://doi.org/10.1111/andr.12868
41. Van den Berg DF, Te Velde AA. Severe COVID‑19: NLRP3 Inflammasome Dysregulated. Front Immunol. 2020 Jun 26;11:1580. https://doi.org/10.3389/fimmu.2020.01580
42. Chen S, Markman JL, Shimada K, Crother TR, Lane M, Abolhesn A, et al. Sex‑Specific Effects of the Nlrp3 Inflammasome on Atherogenesis in LDL Receptor‑Deficient Mice. JACC Basic Transl Sci. 2020 Jun;5(6):582–598. https://doi.org/10.1016/j.jacbts.2020.03.016
43. Flaifel A, Guzzetta M, Occidental M, Najari BB, Melamed J, Thomas KM, et al. Testicular Changes Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS‑CoV‑2). Arch Pathol Lab Med. 2021 Jan 1;145(1):8–9. https://doi.org/10.5858/arpa.2020‑0487‑LE
44. Duarte‑Neto AN, Teixeira TA, Caldini EG, Kanamura CT, Gomes‑Gouvêa MS, Dos Santos ABG, et al. Testicular pathology in fatal COVID‑19: A descriptive autopsy study. Andrology. 2022 Jan;10(1):13–23. https://doi.org/10.1111/andr.13073
45. Shi T, Dansen TB. Reactive Oxygen Species Induced p53 Activation: DNA Damage, Redox Signaling, or Both? Antioxid Redox Signal. 2020 Oct 20;33(12):839–859. https://doi.org/10.1089/ars.2020.8074
46. Grimes JM, Grimes KV. p38 MAPK inhibition: A promising therapeutic approach for COVID‑19. J Mol Cell Cardiol. 2020 Jul;144:63–65. https://doi.org/10.1016/j.yjmcc.2020.05.007
47. Jing J, Ding N, Wang D, Ge X, Ma J, Ma R, et al. Oxidized‑LDL inhibits testosterone biosynthesis by affecting mitochondrial function and the p38 MAPK/COX‑2 signaling pathway in Leydig cells. Cell Death Dis. 2020 Aug 14;11(8):626. https://doi.org/10.1038/s41419‑020‑02751‑z
48. Dhindsa S, Zhang N, McPhaul MJ, Wu Z, Ghoshal AK, Erlich EC, et al. Association of Circulating Sex Hormones With Inflammation and Disease Severity in Patients With COVID‑19. JAMA Netw Open. 2021 May 3;4(5):e2111398. https://doi.org/10.1001/jamanetworkopen.2021.11398
49. Schroeder M, Schaumburg B, Mueller Z, Parplys A, Jarczak D, Roedl K, et al. High estradiol and low testosterone levels are associated with critical illness in male but not in female COVID‑19 patients: a retrospective cohort study. Emerg Microbes Infect. 2021 Dec;10(1):1807–1818. https://doi.org/10.1080/22221751.2021.1969869
50. Kyrou I, Karteris E, Robbins T, Chatha K, Drenos F, Randeva HS. Polycystic ovary syndrome (PCOS) and COVID‑19: an overlooked female patient population at potentially higher risk during the COVID‑19 pandemic. BMC Med. 2020 Jul 15;18(1):220. https://doi.org/10.1186/s12916‑020‑01697‑5
51. Rastrelli G, Di Stasi V, Inglese F, Beccaria M, Garuti M, Di Costanzo D, et al. Low testosterone levels predict clinical adverse outcomes in SARS‑CoV‑2 pneumonia patients. Andrology. 2021 Jan;9(1):88–98. https://doi.org/10.1111/andr.12821
52. Cinislioglu AE, Cinislioglu N, Demirdogen SO, Sam E, Akkas F, Altay MS, et al. The relationship of serum testosterone levels with the clinical course and prognosis of COVID‑19 disease in male patients: A prospective study. Andrology. 2022 Jan;10(1):24–33. https://doi.org/10.1111/andr.13081
53. Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, et al. Effect of SARS‑CoV‑2 infection upon male gonadal function: A single center‑based study. medRxiv. 2020 Jan 1;2020.03.21.20037267. https://doi.org/10.1101/2020.03.21.20037267
54. Datta S, Sengupta P. SARS‑CoV‑2 and Male Infertility: Possible Multifaceted Pathology. Reprod Sci. 2021 Jan;28(1):23–26. https://doi.org/10.1007/s43032‑020‑00261‑z
55. Rambhatla A, Bronkema CJ, Corsi N, Keeley J, Sood A, Affas Z, et al. COVID‑19 Infection in Men on Testosterone Replacement Therapy. J Sex Med. 2021 Jan;18(1):215–218. https://doi.org/10.1016/j.jsxm.2020.09.013
56. Bianchi VE. The Anti‑Inflammatory Effects of Testosterone. J Endocr Soc. 2019 Jan 1;3(1):91–107. https://doi.org/10.1210/js.2018‑00186
57. Aboudounya MM, Heads RJ. COVID‑19 and Toll‑Like Receptor 4 (TLR4): SARS‑CoV‑2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation. Mediators Inflamm. 2021;2021:8874339. https://doi.org/10.1155/2021/8874339
58. Pozzilli P, Lenzi A. Commentary: Testosterone, a key hormone in the context of COVID‑19 pandemic. Metabolism. 2020 Jul;108:154252. https://doi.org/10.1016/j.metabol.2020.154252
59. Salonia A, Corona G, Giwercman A, Maggi M, Minhas S, Nappi RE, et al. SARS‑CoV‑2, testosterone and frailty in males (PROTEGGIMI): A multidimensional research project. Andrology. 2021 Jan;9(1):19–22. https://doi.org/10.1111/andr.12811
60. Koskinen M, Carpen O, Honkanen V, Seppänen MRJ, Miettinen PJ, Tuominen JA, et al. Androgen deprivation and SARS‑CoV‑2 in men with prostate cancer. Ann Oncol. 2020 Oct;31(10):1417–1418. https://doi.org/10.1016/j.annonc.2020.06.015
Supplementary files
Review
For citations:
Gritskevich A.A., Prokhorova Ya.D., Baitman T.P., Gritskevich E.Yu., Kostin A.A. Androgens and severity of the new coronavirus infection course. Research and Practical Medicine Journal. 2022;9(2):143-155. (In Russ.) https://doi.org/10.17709/2410-1893-2022-9-2-13