Preview

Research and Practical Medicine Journal

Advanced search

OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY

https://doi.org/10.17709/2409-2231-2016-3-4-4

Abstract

This is a review of modern literature data of official medications for anti-tumor gene therapy as well as of medications that finished clinical trials.

The article discusses the concept of gene therapy, the statistical analysis results of initiated clinical trials of gene products, the most actively developing directions of anticancer gene therapy, and the characteristics of anti-tumor gene medications.

Various delivery systems for gene material are being examined, including viruses that are defective in  replication (Gendicine™ and Advexin) and oncolytic (tumor specific conditionally replicating) viruses (Oncorine™, ONYX-015, Imlygic®).

By now three preparations for intra-tumor injection have been introduced into oncology clinical practice: two of them – Gendicine™ and Oncorine™ have been registered in China, and one of them – Imlygic® has been registered in the USA. Gendicine™ and Oncorine™ are based on the wild type p53 gene and are designed for treatment of patients with head and neck malignancies. Replicating adenovirus is the delivery system in Gendicine™, whereas oncolytic adenovirus is the vector for gene material in Oncorine™. Imlygic® is based on the  recombinant replicating HSV1 virus with an introduced GM–CSF gene and is designed for treatment of  melanoma patients. These medications are well tolerated and do not cause any serious adverse events. Gendicine™ and Oncorine™ are not effective in monotherapy but demonstrate pronounced synergism with chemoand radiation therapy. Imlygic® has just started the post marketing trials.

About the Authors

E. R. Nemtsova
P. Hertsen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Centre
Russian Federation

Elena R. Nemtsova – MD, leading researcher,  the department of the modifiers and protectors of anticancer therapy.

3, 2nd Botkinskiy proezd, Moscow, 125284, Russia; E-mail: nemtz@yandex.ru



O. A. Bezborodova
P. Hertsen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Centre
Russian Federation

Olga A. Bezborodova - PhD, senior researcher, the department of the modifiers and protectors of anticancer therapy.

3, 2nd Botkinskiy proezd, Moscow, 125284, Russia; E-mail: olgabezborodova@yandex.ru



R. I. Yakubovskaya
P. Hertsen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Centre
Russian Federation

Raisa I. Yakubovskaya - MD, professor, head of the department of the modifiers and protectors of anticancer therapy.

3, 2nd Botkinskiy proezd, Moscow, 125284, Russia; E-mail: raisayakub@yandex.ru



A. D. Kaprin
P. Hertsen Moscow Oncology Research Institute, Branch of the National Medical Research Radiological Centre
Russian Federation

Andrey D. Kaprin – academician of RAS, PhD, MD, Prof.; Corr. member  of the Russian Academy of Education; Honored Physician of the Russian Federation; General Director of NMRRC, Head of Department of Urology with Course of Urological Oncology, Faculty for Postgraduate Training, PFU of Russia.

3, 2nd Botkinskiy proezd, Moscow, 125284, Russia



References

1. Rosenberg S. A., Aebersold P., Cornetta K., Kasid A., Morgan R. A., Moen R., Karson E. M., Lotze M. T., Yang J. C., Topalian S. L. Gene transfer into humans – immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med. 1990; 323: 570–578. DOI: 10.1056/nejm199008303230904

2. Gene Therapy Clinical Trials Worldwide. John Wiley & Sons Inc; Hoboken, NJ, USA: 2015. A comprehensive searchable online database of gene therapy clinical trials. Available at: www.wiley.co.uk/genmed/clinical.

3. Ajith T. A. Strategies used in the clinical trials of gene therapy for cancer. J Exper Ther Oncol. 2015; 11 (1): 33–39.

4. Räty J. K., Pikkarainen J. T., Wirth T., Ylä-Herttuala S. Gene therapy: the first approved gene-based medicines, molecular mechanisms and clinical indications. Curr Mol Pharmacol. 2008; 1 (1): 13–23.

5. Fung H., Gersson S. Viral insertion site detection and analysis in cancer gene therapy. In: Gene Therapy of Cancer. 3rd edition. Edited by Lattime EC, Gerson SL. San Diego (CA): Elsevier; 2013, 35–46.

6. Gujrati M., Lu Z. Targeted systemic delivery of therapeutic siRNA. In: Gene Therapy of Cancer. 3rd edition. Edited by Lattime EC, Gerson SL. San Diego (CA): Elsevier; 2013, 47–65.

7. Davis M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol Pharm. 2009; 6 (3): 659–668. DOI: 10.1021/mp900015y

8. Maxon J., Weaver Ch. Antisense Therapy: An Overview. Current Topics In Oncology, 2005.

9. Sakuma T., Woltjen K. Nuclease-mediated genome editing: at the front-line of functional genomics technology. Dev Growth Differ. 2014 Jan; 56 (1): 2–13. DOI: 10.1111/dgd.12111

10. Cai Y., Bak R. O., Mikkelsen J. G. Targeted genome editing by lentiviral protein transduction of zinc-finger and TAL-effector nucleases. Elife. 2014 Apr 24; 3: e01911. DOI: 10.7554/elife.01911

11. Uhde-Stone C., Sarkar N., Antes T., Otoc N., Kim Y., Jiang Y. J., et al. A TALENbased strategy for efficient bi-allelic miRNA ablation in human cells. RNA. 2014 Jun; 20 (6): 948–955. DOI: 10.1261/rna.042010.113

12. Roth J. A. Adenovirus p53 gene therapy. Expert Opin Biol Ther. 2006; 6: 55–61. DOI: 10.1517/14712598.6.1.55

13. Eberle J., Fecker L. F., Hossini A. M., Kurbanov B. M., Fechner H. Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma. Exp Dermatol. 2008; 17: 1–11. DOI: 10.1111/j.1600–0625.2007.00655.x

14. Zarogoulidis P., Darwiche K., Sakkas A., Yarmus L., Huang H., Li Q., et al. Suicide gene therapy for cancer – current strategies. J Genet Syndr Gene Ther. 2013; 4. DOI: 10.4172/2157–7412.1000139

15. Suicide Gene Therapy: Methods and Reviews. Ed. By C. J. Springer. Methods in Molecular Medicine, Vol. 90. Humana Press Inc, Totowa NJ.

16. Aghi M., Martuza R. L. Oncolytic viral therapies – the clinical experience. Oncogene. 2005; 24: 7802–7816. DOI: 10.1038/sj.onc.1209037

17. Hemminki O., Hemminki A. Oncolytic adenoviruses in treatment of cancer in humans. Gene Therapy of Cancer. 2014; pp. 153–170. DOI: 10.1016/b978–0-12–394295–1.00011–1

18. Breitbach C. J., Thorne S. H., Bell J. C., Kirn D. H. Targeted and armed oncolytic poxviruses for cancer: the lead example of JX-594. Curr Pharm Biotechnol. 2011; 13 (9): 1768–72. DOI: 10.2174/138920112800958922

19. Guse K., Sloniecka M., Diaconu I., Ottolino-Perry K., Tang N., Ng C., et al. Antiangiogenic arming of an oncolytic vaccinia virus enhances antitumor efficacy in renal cell cancer models. J Virol. 2010 Jan; 84 (2): 856–866. DOI: 10.1128/jvi.00692–09

20. Yuan Z., Pastoriza J., Quinn T., Libutti S. Targeting tumor vasculature using adeno-associated virus page vector coding tumor necrosis factor-a. In Gene Therapy of Cancer. 3rd edition. Edited by Lattime E. C., Gerson SL. San Diego (CA): Elsevier; 2013, pp. 19–33.

21. Wilson J. M. Gendicine: the first commercial gene therapy product. Hum Gene Ther. 2005 Sep; 16 (9): 1014–1015. DOI: 10.1089/hum.2005.16.1014

22. Tazawa H., Kagawa S., Fujiwara T. Advances in adenovirus-mediated p53 cancer gene therapy. Expert Opin Biol Ther. 2013; 13 (11): 1569–1583. DOI: 10.1517/14712598.2013.845662

23. Zhou J., Zhang Y., Zhao G., Liu Y., Li C., Tang S., et al. The preliminary study of recombinant adenovirus p53 combined with transarterial embolization with particles for advanced hepatocellular carcinoma. Zhonghua Yi Xue Za Zhi. 2014; 94 (9): 660–663.

24. Yi Li., Bo Li., Chun-Jie Li., Long-Jiang Li. Key points of basic theories and clinical practice in rAd-p53 (Gendicine™) gene therapy for solid malignant tumors. Expert Opin Biol Ther. 2015; 15 (3); 437–454. DOI: 10.1517/14712598.2015.990882

25. Volgestein B., Lane D., Levine A. J. Surfing the p53 network. Nature. 2000; 408: 307–310. DOI: 10.1038/35042675

26. Chen G., Zhang S., He X., Liu S., Ma Ch., Zou X-P. Clinicl utility of recombinant adenoviral human p53 gene therapy: current perspectives. OncoTargets and Therapy. 2014; 7: 1901–1909. DOI: 10.2147/ott.s50483

27. Han D. M., Huang Z. G., Zhang W., Yu Z. K., Wang Q., Ni X., et al. Effectiveness of recombinant adenovirus p53 injection on laryngeal cancer: phase I clinical trial and follow up. Zhonghua Yi Xue Za Zhi. 2003; 83 (23): 2029–2032.

28. Peng Z., Han D., Zhang S., et al. Clinical evaluation of safety and efficacy of intratumoral administration of a recombinant adenoviral p53 anticancer agent (Genkaxin). Med Ther. 2003; 7: 422–423.

29. Vattemi E., Claudio P. P. Adenoviral gene therapy in head and neck cancer. Drug News Perspect. 2006; 19 (6): 329–337. DOI: 10.1358/dnp.2006.19.6.1015352

30. Li X., Xiao S., Li Y., Zhang S. Clinical antiangiogenic effect of recombinant adenovirus-p53 combined with hyperthermia for advanced canced. Chin J Cancer Res. 2013; 25 (6): 749–755. DOI: 10.3978/j.issn.1000–9604.2013.12.05

31. Chen S., Chen J., Xi W., Xu W., Yin G. Clinical therapeutic effect and biological monitoring of p53 gene in advanced hepatocellular carcinoma. Am J Clin Oncol. 2014; 37 (1): 24–29. DOI: 10.1097/coc.0b013e3181fe4688

32. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy – nitrogen, RPR/INGN 201. Drugs R D. 2007; 8: 176–187.

33. Clayman G. L., El-Naggar A. K., Lippman S. M., Henderson Y. C., Frederick M., Merritt J. A., et al. Adenovirus-mediated p53 gene transfer in patients with advanced recurrent head and neck squamous cell carcinoma. J Clin Oncol. 1998; 16: 2221–2232.

34. Clayman G. L., Frank D. K., Bruso P. A., Goepfert H. Adenovirus-mediated wild-type p53 gene transfer as a surgical adjuvant in head and neck cancers. Clin Cancer Res. 1999; 5 (7): 1715–1722. http://clincancerres.aacrjournals.org/content/5/7/1715.long

35. Vattemi E., Claudio P. P. The feasibility of gene therapy in the treatment of head and neck cancer. Head Neck Oncol. 2009; 1: 3. DOI: 10.1186/1758–3284–1-3

36. Lebedeva I.V, Emdad L., Su Z. Z., Gupta P., Sauane M., Sarkar D., et al. Мda-7/IL-24, novel anticancer cytokine: focus on bystander antitumor, radiosensitization and antiangiogenic properties and overview of the phase I clinical experience (Review). Int J Oncol. 2007 Nov; 31 (5): 985–1007. DOI: 10.3892/ijo.31.5.985

37. Ramesh R., Ioannides C. G., Roth J. A., Chada S. Adenovirus-mediated interleukin (IL)-24 immunotherapy for cancer. Methods Mol Biol. 2010; 651: 241–270. DOI: 10.1007/978–1-60761–786–0_14

38. Cunningham C. C., Chada S., Merritt J. A., Tong A., Senzer N., Zhang Y., et al. Clinical and local biological effects of an intratumoral injection of mda-7 (IL24; INGN 241) in patients with advanced carcinoma: a phase I study. Mol Ther. 2005; 11 (1):149–159. DOI: 10.1016/j.ymthe.2004.09.019

39. Bischoff J. R., Kirn D. H., Williams A., Heise C., Horn S., Muna M., et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science. 1996; 274: 373–376. DOI: 10.1126/science.274.5286.373

40. Goodrum F. D., Ornelles D. A. P53 status does not determine outcome of E1b 55-kilodalton mutant adenovirus lytic infection. J Virol. 1998; 72 (12): 9479–9490. http://jvi.asm.org/content/72/12/9479.long Research’n Practical Medicine Journal. 2016, V. 3, №4, с. 33-43

41. Rothmann T., Hengstermmann A., Whitaker N. J., Scheffner M, zur Hausen H. Replication of ONYX-015, as a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol. 1998; 72 (12): 9470–9478. http://jvi.asm.org/content/72/12/9470.long

42. Quelle D. E., Zindy F., Ashun R. A., Sherr C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995; 83 (6): 993–1000. DOI: 10.1016/0092–8674(95)90214–7

43. Ries S. J., Brandts C. H., Chung A. S., Biederer C. H., Hann B. C., Lipner E. M., et al. Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl 1520 (ONYX-015). Nat Med. 2000; 6 (10): 1128–1133. DOI: 10.1038/80466

44. Ganly I., Kirn D., Eckhardt G., Rodriguez G. I., Soutar D. S., Otto R., et al. A phase I study of ONYX-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res. 2000; 6 (3): 798–806. http://clincancerres.aacrjournals.org/content/6/3/798.long

45. Nemunaitis J, Khuri F, Ganly I, Arseneau J., Posner M., Vokes E., et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol. 2001; 19 (12): 289–298.

46. Rudin C. M., Cohen E. E., Papadimitrakopoulou V. A., Silverman S. Jr, Recant W., El-Naggar A. K., et al. An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. J Clin Oncol. 2003; 21 (24): 4546–4552. DOI: 10.1200/jco.2003.03.544

47. Khuri F. R., Nemmunaitis J., Ganly I., Arseneau J., Tannock I. F., Romel L., et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cysplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med. 2000; 6 (8): 879–885.

48. Lammont J. P., Nemunaitis J., Kuhn J. A., Landers S. A., McCarty T. M. A prospective phase II trial of ONYX-015 adenovirus and chemotherapy in recurrent squamous cell carcinoma of the head and neck (the Baylor experience). Ann Surg Oncol. 2000; 7 (8): 588–592.

49. Habib N., Salama H., Abd El Latif Abu Mediam A., Isac Anis I., Abd Al Aziz R. A., Sarraf C., et al. Clinical trial of E1B-deleted adenovirus (dl1520) gene therapy for hepatocellular carcinoma. Cancer Gene Ther. 2002; 9 (3): 254–259. DOI: 10.1038/sj.cgt.7700431

50. Larson C., Oronsky B., Scicinski J., Fanger G. R., Stirn M., Oronsky A., et al. Going viral: a review of replication-selective oncolytic adenoviruses. Oncotarget. 2015; 6 (24): 19976–19989. DOI: 10.18632/oncotarget.5116

51. Garber K. China approves world’s first oncolytic virus therapy for cancer treatment. J Natl Cancer Inst. 2006; 98 (5): 298–300. DOI: 10.1093/jnci/djj111

52. Yu W., Fang H. Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7 (2): 141–148. DOI: 10.2174/156800907780058817

53. Lu W., Zheng S., Li X. F., Huang J. J., Zheng X., Li Z. Intra-tumor injection of H101, a recombinant adenovirus, in combination with chemotherapy in patients with advanced cancers: A pilot phase II clinical trial. World J Gastroenterol. 2004; 10 (24): 3634–3638. DOI: 10.3748/wjg.v10.i24.3634

54. Cheng P-H., Wechman S. L., McMasters K. M., Zhou H. S. Oncolytic replication of E1b-deleted Adenoviruses. Viruses. 2015; 7 (11): 5767–5779. DOI: 10.3390/v7112905

55. Liang M. Clinical development of oncolytic viruses in China. Curr Pharm Biotechnol. 2012; 13 (9):1852–1857. DOI: 10.2174/138920112800958760

56. Li J. L., Liu H. L., Zhang X. R., Xu J. P., Hu W. K., Liang M., et al. A phase I trial of intratumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther. 2009; 16 (3): 376–382. 10.1038/gt.2008.179

57. Frew S. E., Sammut S. M., Shore A. F., Ramjist J. K., Al-Bader S., Rezaie R., et al. Chinese health biotech and the billion-patient market. Nat Biotechnol. 2008; 26 (1): 37–53. DOI: 10.1038/nbt0108–37

58. Pol J., Kroemer G., Galuzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016; 5 (1): e1115641. DOI: 10.1080/2162402x.2015.1115641

59. Goins W. F., Huang S., Cohen J. B., Glorioso J. C. Engineering HSV1 vectors for gene therapy. Methods Mol Biol. 2014; 1144: 63–79. DOI: 10.1007/978–1-4939–0428–0_5

60. Vacchelli E., Eggermont A., Fridman W. H., Galon J., Zitvogel L., Kroemer G., Trial watch: immunostimulatory cytokines. Oncoimmunology 2013; 2 (7): e24850. DOI: 10.4161/onci.24850

61. Vacelli E., Aranda F., Obrist F., Eggermont A., Galon J., Cremer I., et al. Trial watch: immunostimulatory cytokines. Oncoimmunology 2014; 3: 29030. DOI: 10.4161/onci.29030

62. Razonable R. R. Antiviral drugs for viruses other than human immunodeficiency virus. Mayo Clin Proc. 2011; 86: 1009–1026. DOI: 10.4065/mcp.2011.0309

63. Kaufman H. L., Bines S. D. OPTIM trial: a Phase III trial of an oncolytic herpes virus encoding GM–CSF for unresectable stage or IV melanoma. Future Oncol. 2010; 6: 9410949. DOI: 10.2217/fon.10.66

64. Galuzzi L., Lugli E. Cancer immunotherapy turns viral. Oncoimmunology 2013; 2: e24802. DOI: 10.4161/onci.24802

65. Andtbacka R. H., Kaufman H. L., Collichio F., Amartruda T., Senzer N., Chesney J., et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33: 2780–2788. DOI: 10/1200/JCO.2014.58.3377

66. Reid T, Galanis E, Abbruzzese J, Sze D., Andrews J., Romel L., et al. Intra-arterial administration of replication-selective adenovirus (dl1520) in patients with colorectal carcinoma metastatic to the liver: a phase I trail. Gene Ther. 2001; 8 (21): 1618–1626. DOI: 10.1038/sj.gt.3301512

67. Reid T., Warren R., Kirn D. Intravascular adenoviral agents in cancer patients: Lessons from clinical trials. Cancer Gene Therapy. 2002; 9 (12): 979–986. DOI: 10.1038/sj.cgt.7700539

68. Reid T., Galanis E., Abbruzzese J., et al. Hepatic artery infusion of ONYX-015? A replication-selective adenovirus, in combination with 5-FU/leucovorin for gastrointestinal carcinoma metastatic to the liver: a phase I/II clinical trial. Proc Am Soc Clin Oncol. 2000; 19: 953.


Review

For citations:


Nemtsova E.R., Bezborodova O.A., Yakubovskaya R.I., Kaprin A.D. OFFICIAL MEDICATIONS FOR ANTI-TUMOR GENE THERAPY. Research and Practical Medicine Journal. 2016;3(4):33-43. (In Russ.) https://doi.org/10.17709/2409-2231-2016-3-4-4

Views: 2603


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)