CURRENT POSSIBILITIES OF MAGNETIC – RESONANCE IMAGING IN DETECTION OF OVARIAN CANCER
https://doi.org/10.17709/2409-2231-2017-4-1-5
Abstract
Currently, malignant tumors of ovaries take the third place in the structure of oncogynecological diseases, being a leading cause of death among pathology of female reproductive system. Due to the lack of effective screening programs and asymptomatic course of the disease in its early stages, in the majority of cases ovarian cancer (OC) is detected in form of disseminated process, what greatly reduces the effectiveness of primary treatment and has a negative impact on the further prognosis. In connection with the above, timely diagnosis and organization of OC screening, as well as monitoring of its recurrence is a major problem for oncologists around the world.
In the present literature review the opportunities of magnetic — resonance imaging (MRI) in detection of primary ovarian cancer and its recurrence are considered, the analysis of the method diagnostic efficiency based on the use of various techniques is done. The opportunities of MRI show a lot of information necessary for the characterization of detected ovarian formations, estimates of the prevalence of primary ovarian cancer and its recurrence. However, the analysis of performed literature revealed a significant lack of materials devoted to the definition of the diagnostic capabilities of various MRI techniques, including diffusion — weighted imaging (DWI), what indicates the necessity for further studies in this direction.
About the Authors
N. A. RubtsovaRussian Federation
MD. Med., the Head of Radiology Department,
3, 2nd Botkinskiy proezd, Moscow, 125284
E. G. Novikova
Russian Federation
MD. Med., professor, Head of Oncogynecological Department,
3, 2nd Botkinskiy proezd, Moscow, 125284
I. Yu. Sychenkova
Russian Federation
radiologyst,
3, 2nd Botkinskiy proezd, Moscow, 125284
References
1. Nikogosyan SO, Kuznetsov VV. Ovarian cancer: questions of diagnostics and current methods of treatment. Vrach (The Doctor). 2010; 9 (2): 2–8. (In Russian).
2. The state of Russian population cancer care in 2014. Ed by Kaprin AD, Starinskii VV, Petrova GV. Мoscow, 2015. Available at: http://www.oncology.ru/service/statistics/condition/2014.pdf (In Russian).
3. Khattak YJ, Hafeez S, Alam T, Beg M, Awais M, Masroor I. Ovarian masses: Is multi-detector computed tomography a reliable imaging modality? Asian Pac J Cancer Prev. 2013; 14 (4): 2627–2630.
4. Sukonko OG, Okeanov AE, Moiseyev PI. Specialised medical care of cancer patients in 2013. Oncological Journal. 2014; 1 (29): 5–16. (In Russian).
5. Pickhardt PJ, Hanson ME. Incidental adnexal masses detected at low-dose unenhanced CT in asymptomatic women age 50 and older: Implications for clinical management and ovarian cancer screening. Radiology. 2010; 257 (1): 144–150. DOI: 10.1148/radiol.10100511
6. Barchuk AS, Merabishvili VM. Vyzhivaemost’ onkologicheskikh bol’nykh [The survival rate of cancer patients]. St.Petersburg, 2006. (In Russian).
7. Malignansies in Russia in 2010. Ed by Chissov VI, Starinskii VV, Petrova GV. Мoscow, 2012. Available at: http://www.oncology.ru/service/statistics/malignant_tumors/2010.pdf (In Russian).
8. The state of Russian population cancer care in 2015. Ed by Kaprin AD, Starinskii VV, Petrova GV. Мoscow, 2016. (In Russian).
9. Chan JK, Tian C, Monk BJ. Prognostic factors for high-risk early stage epithelial ovarian cancer: a Gynecologic Oncology Group study. Cancer. 2008; 112 (10): 2202–2210. DOI: 10.1002/cncr.23390
10. Paulsen T, Kaern J, Trope C. Improved 5-year disease-free survival for FIGO stage I epithelial ovarian cancer patients without tumor rupture during surgery. Gynec Oncol. 2011; 122 (1): 83–88. DOI: 10.1016/j.ygyno.2011.02.038
11. Foley OW, Rauh-Hain A, Del Carmen MG. Recurrent epithelial ovarian cancer: an update on treatment. Oncology. 2013; 27 (4): 288–294. http://www.cancernetwork.com/oncology-journal/recurrent-epithelial-ovarian-cancer-update-treatment
12. Bergen TA, Trofimenko IA. Technique of MR diffusion and its application in the study of small-pelvis tumors in women. Bulletin of Siberian Medicine. 2012; 11 (1): 10–12. (In Russian).
13. Chilla B, Hauser N, Singer G, Trippel M, Froehlich JM, Kubik-Huch RA. Indeterminate adnexal masses at ultrasound: effect of MRI imaging findings on diagnostic thinking and therapeutic decisions. Eur Radiol. 2011; 21 (6): 1301–1310. DOI: 10.1007/s00330–010–2018-x
14. Foti PV, Attina G, Spadola S, Caltabiano R, Farina R, Palmucci S, et al. MR-imaging of ovarian masses: classification and differential diagnosis. Insights Imaging. 2016; 7 (1): 21–41. DOI: 10.1007/s13244–015–0455–4
15. Cui YF, Li WH, Zhu MJ, et al. Clinical application and research of diffusion weighted MR imaging in complex ovarian tumors. Journal of China Clinic Medical Imaging. 2012; 23: 856–859.
16. Dolgushin BI, Tyurin IE, Luk’yanchenko AB, Medvedeva BM, Dronova EL, Shima V, et al. Standards of CT- and MRI- contrast enhancement studies in oncology using. Medical Alphabet. 2013; 23 (3–4): 29–37. (In Russian).
17. Abedi SM, Mardanshahi A, Shahhosseini R, Hosseinimehr SJ. Nuclear medicine for imaging of epithelial ovarian cancer. Future Oncol. 2016; 12 (9): 1165–1177. DOI: 10.2217/fon.16.19
18. Cai SQ, Zhao SH, Qiang JW, Zhang GF, Wang XZ, Wang L. Ovarian Sertoli-Leydig cell tumors: MRI findings and pathological correlation. J Ovarian Res. 2013; 6 (1): 73. DOI: 10.1186/1757–2215–6-73
19. Safonova MA, Diomidova VN. Kompleksnaya luchevaya diagnostika opukholevogo porazheniya organov malogo taza pri sinkhronnykh polineoplaziyakh. Sovremennye tendentsii razvitiya nauki i tekhnologii. 2015; 6 (4): 88–90. (In Russian).
20. Bollineni VR, Kramer G, Liu Y, Melidis C, deSouza NM. A literature review of the association between diffusion-weighted MRI derived apparent diffusion coefficient and tumour aggressiveness in pelvic cancer. Cancer Treat Rev. 2015; 41 (6): 496–502. DOI: 10.1016/j.ctrv.2015.03.010
21. Carter JS, Koopmeiners JS, Kuehn-Hajder JE, Metzger GJ, Lakkadi N, Downs LS Jr, et al. Quantitative multiparametric MRI of ovarian cancer. J Magn Reson Imaging. 2013; 38 (6): 1501–1509. DOI: 10.1002/jmri.24119
22. Santoso JT, Robinson A, Suganda S, Praservit S, Wan JY, Ueland F. Computed tomography adnexal mass score to estimate risk for ovarian cancer. Arch Gynecol Obstet. 2014; 289 (3): 595–600. DOI: 10.1007/s00404–013–3013–7
23. Solomatina AA, Tyumentseva MYu, Shabrina OV, Shirinova SS, Sargsyan NS. The role of additional methods of examination in diagnosing small ovarian neoplasms. Vopr. ginekol. akus. perinatol. (Gynecology, Obstetrics and Perinatology). 2008; 7 (5): 34–40. (In Russian).
24. Manganaro L, Bernardo S, Sergi M, Sollazzo P, Vinci V, De Grazia A, et al. Burkitt’s lymphoma presented as advanced ovarian cancer without evidence of lymphadenopathy: CT and MRI findings. Case Rep Radiol. 2013; 2013: 1–5. DOI: doi.org/10.1155/2013/940160.
25. Tsili A, Tsampoulas C, Argyropoulou M, Navrozoglou I, Alamanos Y, Paraskevaidis E, et al. Comparative evaluation of multidetector CT and MR imaging in the differentiation of adnexal masses. Eur Radiol. 2008; 18 (5): 1049–1057. DOI: 10.1007/s00330–007–0842–4
26. Fan X, Zhang H, Meng S, Zhang J, Zhang C. Role of diffusion-weighted magnetic resonance imaging in differentiating malignancies from benign ovarian tumors. Int J Clin Exp Med. 2015; 8 (11): 19928–19937.
27. Iyer VR, Lee SI. MRI, CT, and PET/CT for ovarian cancer detection and adnexal lesion characterization. AJR Am J Roentgenol. 2010; 194 (2): 311–321. DOI: 10.2214/ajr.09.3522
28. Whiting N, Hu J, Zacharias NM, Lokesh GL, Volk DE, Menter DG, et al. Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer. J Med Imaging (Bellingham). 2016; 3 (3): 036001. DOI: 10.1117/1.jmi.3.3.036001
29. Li W, Chu C, Cui Y, Zhang P, Zhu M. Diffusion-weighted MRI: A useful technique to discriminate benign versus malignant ovarian surface epithelial tumors with solid and cystic components. Abdom Imaging. 2012; 37 (5): 897–903. DOI: 10.1007/s00261–011–9814-x
30. Kim HJ, Lee SY, Shin YR, Park CS, Kim K. The Value of Diffusion-Weighted Imaging in the Differential Diagnosis of Ovarian Lesions: A Meta-Analysis. PLoS One. 2016; 11 (2): 0149465. DOI: 10.1371/journal.pone.0149465
31. Cappabianca S, Iaselli F, Reginelli A, D’Andrea A, Urraro F, Grassi R, et al. Value of diffusion-weighted magnetic resonance imaging in the characterization of complex adnexal masses. Tumori. 2013; 99 (3): 210–217. DOI: 10.1700/1283.14194
32. Solopova AYe, Ternovoi SK, Sdvizhkov AM, Abduraimov AB. Current capabilities of magnetic-resonance tomography in combined preoperative diagnostics of epithelial ovarian cancer. Bulletin of Siberian Medicine. 2012; 11 (1): 119–120. (In Russian).
33. Kierans AS, Bennett GL, Mussi TC, Babb JS, Rusinek H, Melamed J, et al. characterization of malignancy of adnexal lesions using adc entropy: Comparison with mean adc and qualitative DWI assessment. J Magn Reson Imaging. 2013; 37 (1): 164–171. DOI: 10.1002/jmri.23794
34. Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian cancer: A clinical feasibility study in comparison to CT and FDGPET/CT. Eur Radiol. 2014; 24 (4): 889–901. DOI: 10.1007/s00330–013–3083–8
35. Vargas HA, Barrett T, Sala E. MRI of ovarian masses. J Magn Reson Imaging. 2013; 37 (2): 265–281. DOI: 10.1002/jmri.23721
36. Bekiesinska-Figatowska M, Bragoszewska H, Jurkiewicz E, Uliasz M, Romaniuk-Doroszewska A, Bragoszewska H, et al. Magnetic resonance imaging as a diagnostic tool in case of ovarian masses in girls and young women. Med Sci Monit. 2007; 13 (1): 116–120. http://www.medscimonit.com/download/index/idArt/482393
37. Wang W, Ding J, Zhu X, Li Y, Gu Y, Peng W. Magnetic Resonance Imaging Characteristics of Ovarian Clear Cell Carcinoma. PLoS One. 2015; 10 (7): e0132406. DOI: 10.1371/journal.pone.0132406
38. Kozawa E, Inoue K, Takahashi M, Kato T, Yasuda M, Kimura F. Diffusion-weighted MR imaging findings of ovarian adenocarcinofibromas and adenofibromas. Clin. Imaging. 2014; 38 (4): 483–489. DOI: 10.1016/j.clinimag.2014.01.014
39. Morita S, Kojima S, Hirata M, Suzuki K, Ueno E. Perfusion fraction of diffusion-weighted MRI for predicting the presence of blood supply in ovarian masses. J Magn Reson Imaging. 2011; 34 (5): 1131–1136. DOI: 10.1002/jmri.22695
40. Espada M, Garcia-Flores JR, Jimenez M, Alvarez-Moreno E, De Haro M, Gonzalez-Cortijo L, et al. Diffusion-weighted magnetic resonance imaging evaluation of intra-abdominal sites of implants to predict likelihood of suboptimal cytoreductive surgery in patients with ovarian carcinoma. Eur Radiol. 2013; 23 (9): 2636–2642. DOI: 10.1007/s00330–013–2837–7
41. Horvath K, Godeny M. New opportunities, MRI biomarkers in the evaluation of gynaecological cancer. Magy Onkol. 2015; 59 (3): 216–227.
42. Canese R, Mezzanzanica D, Bagnoli M, Indraccolo S, Canevari S, Podo F, et al. In vivo Magnetic Resonance Metabolic and Morphofunctional Fingerprints in Experimental Models of Human Ovarian Cancer. Front Oncol. 2016; 28 (6): 164. DOI: 10.3389/fonc.2016.00164
43. Fehniger J, Thomas S, Lengyel E, Liao C, Tenney M, Oto A, et al. A prospective study evaluating diffusion weighted magnetic resonance imaging (DW-MRI) in the detection of peritoneal carcinomatosis in suspected gynecologic malignancies. Gynecol Oncol. 2016; 142 (1): 169–175. DOI: 10.1016/j.ygyno.2016.04.018
44. Fujii S, Matsusue E, Kanasaki Y, Kanamori Y, Nakanishi J, Sugihara S, et al. Detection of peritoneal dissemination in gynecological malignancy: Evaluation by diffusion-weighted MR imaging. Eur Radiol. 2008; 18 (1): 18–23. DOI: 10.1007/s00330–007–0732–9
45. Rogozhyn VA. MRI in gynecology. Russian Electronic Journal of Radiology (REJR). 2012; 2 (3): 27–40. (In Russian).
46. Thomassin-Naggara I, Daraï E, Cuenod C, Fournier L, Toussaint I, Marsault C, et al. Contribution of diffusion-weighted MR imaging for predicting benignity of complex adnexal masses. Eur Radiol. 2009; 19 (6): 1544–1552. DOI: 10.1007/s00330–009–1299–4
47. Zhang H, Zhang G, He Z, Li ZY, Zhu M, Zhang GX. Evaluation of primary adnexal masses by 3 T MRI: Categorization with conventional MR imaging and diffusion-weighted imaging. J Ovarian Res. 2012; 5 (1):33. DOI: 10.1186/1757–2215–5-33
48. Mohaghegh P, Rockall A. Imaging strategy for early ovarian cancer: characterization of adnexal masses with conventional and advanced imaging techniques. Radiographics. 2012; 32 (6): 1751–1773. DOI: 10.1148/rg.326125520
49. Medeiros LR, Freitas LB, Rosa DD, Silva FR, Silva LS, Birtencourt LT, et al. Accuracy of magnetic resonance imaging in ovarian tumor: A systematic quantitative review. Am J Obstet Gynecol. 2011; 204 (67): 61–70. DOI: 10.1016/j.ajog.2010.08.031
50. Takeuchi M, Matsuzaki K, Harada M. Computed diffusion-weighted imaging for differentiating decidualized endometrioma from ovarian cancer. Eur J Radiol. 2016; 85 (5): 1016–1019. DOI: 10.1016/j.ejrad.2016.03.009
51. Takeuchi M, Matsuzaki K, Nishitani H. Diffusion-weighted magnetic resonance imaging of ovarian tumors: Differentiation of benign and malignant solid components of ovarian masses. J Comput Assist Tomogr. 2010; 34 (2): 173–176. DOI: 10.1097/rct.0b013e3181c2f0a2
52. Kyriazi S, Collins DJ, Morgan VA, Giles SL, deSouza NM. Diffusion-weighted imaging of peritoneal disease for non invasive staging of advanced ovarian cancer. Radiographics. 2010; 30 (5): 1269–1285. DOI: 10.1148/rg.305105073
53. Zhao SH, Qiang JW, Zhang GF, Ma FH, Cai SQ, Li HM, et al. Diffusion-weighted MRimaging for differentiating borderline from malignant epithelial tumours of the ovary: pathological correlation. Eur Radiol. 2014; 24 (9): 2292–2299. DOI: 10.1007/s00330–014–3236–4
54. Foti PV, Attina G, Spadola S, Caltabiano R, Farina R, Palmucci S, et al. MR-imaging of ovarian masses: classification and differential diagnosis. Insights Imaging. 2016; 7 (1): 21–41. DOI: 10.1007/s13244–015–0455–4
55. Fan X, Zhang H, Meng S, Zhang J, Zhang C. Role of diffusion-weighted magnetic resonance imaging in differentiating malignancies from benign ovarian tumors. Int J Clin Exp Med. 2015; 8 (11): 19928–19937. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4723750/
56. Bazot M, Darai E, Nassar-Slaba J, Lafont C, Thomassin-Naggara I. Value of magnetic resonance imaging for the diagnosis of ovarian tumors: A review. J Comput Assist Tomogr. 2008; 32 (5): 712–723. DOI: 10.1097/rct.0b013e31815881ef
57. Valentini AL, Gui B, Miccò M, Mingote MC, De Gaetano AM, Ninivaggi V, et al. Benign and suspicious ovarian masses-MR imaging criteria for characterization: pictorial review. J Oncol. 2012; 2012: 1–9. DOI: 10.1155/2012/481806
58. Boldogoeva IM. Possibilities of the diagnostics of ovarian cancer recurrens. Ural’skii meditsinskii zhurnal. 2009; 3: 78–84. (In Russian).
59. Paik ES, Kim TJ, Lee YY, Choi CH, Lee JW, Kim BG, et al. Comparison of survival outcomes after recurrence detected by cancer antigen 125 elevation versus imaging study in epithelial ovarian cancer. J Gynecol Oncol. 2016; 27 (5): 46. DOI: 10.3802/jgo.2016.27.e46
60. Michielsen KL, Vergote I, Dresen R, Op de Beeck K, Vanslembrouck R, Amant F, et al. Whole body diffusion-weighted magnetic resonance imaging in the diagnosis of recurrent ovarian cancer: a clinical feasibility study. Br J Radiol. 2016; 89 (1067): 20160468. DOI: 10.1259/bjr.20160468
Review
For citations:
Rubtsova N.A., Novikova E.G., Sychenkova I.Yu. CURRENT POSSIBILITIES OF MAGNETIC – RESONANCE IMAGING IN DETECTION OF OVARIAN CANCER. Research and Practical Medicine Journal. 2017;4(1):40-48. (In Russ.) https://doi.org/10.17709/2409-2231-2017-4-1-5