Preview

Research'n Practical Medicine Journal

Расширенный поиск

Применение плюрипотентных стволовых клеток в медицине

https://doi.org/10.17709/2409-2231-2015-2-2-44-52

Полный текст:

Аннотация

Такие свойства человеческих плюрипотентных стволовых клеток (чПСК) как способность к неограниченному размножению и образованию всех типов клеток взрослого организма делают их привлекательным источником материала для регенеративной медицины. С другой стороны, множество этических и практических проблем, связанных с чПСК, ограничивают их применение в медицине. Этот литературный обзор посвящён описанию различных видов чПСК, рисков их применения и клинических испытаний, в которых чПСК служат источником клеток для лечения дегенеративных заболеваний и травм.

Об авторе

С. А. Родин
Каролинский Институт, г. Стокгольм, Швеция
Россия
к.б.н., с.н.с. отделения изучения белков внеклеточного матрикса Факультета Медицинской Биохимии и Биофизики Каролинского Института, г.Стокгольм (Швеция)


Список литературы

1. Geens M., Mateizel I., Sermon K., De Rycke M., Spits C., Cauffman G., et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod. 2009;24(11):2709-17.

2. Silva J., Smith A. Capturing pluripotency. Cell. 2008;132(4):532-6.

3. Wu J., Okamura D., Li M., Suzuki K., Luo C., Ma L., et al. An alternative pluripotent state confers interspecies chimaeric competency. Nature. 2015.

4. Thomson J.A., Itskovitz-Eldor J., Shapiro S.S., Waknitz M.A., Swiergiel J.J., Marshall V.S., et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-7.

5. Hovatta O., Rodin S., Antonsson L., Tryggvason K. Concise review: animal substance-free human embryonic stem cells aiming at clinical applications. Stem Cells Transl Med. 2014;3(11):1269-74.

6. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007 Nov 30;131(5):861-72.

7. Revazova E.S., Turovets N.A., Kochetkova O.D., Kindarova L.B., Kuzmichev L.N., Janus J.D., et al. Patient-specific stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. 2007;9(3):432-49.

8. Tachibana M., Amato P., Sparman M., Gutierrez N.M., Tippner-Hedges R., Ma H., et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153(6):1228-38.

9. Klimanskaya I., Chung Y., Becker S., Lu S.J., Lanza R. Human embryonic stem cell lines derived from single blastomeres. Nature. 2006;444(7118):481-5.

10. Gurdon J.B., Elsdale T.R., Fischberg M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature. 1958;182(4627):64-5.

11. Wabl M.R., Brun R.B., Du Pasquier L. Lymphocytes of the toad Xenopus laevis have the gene set for promoting tadpole development. Science. 1975;190(4221):1310-2.

12. Fusaki N., Ban H., Nishiyama A., Saeki K., Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62.

13. Warren L., Manos P.D., Ahfeldt T., Loh Y.H., Li H., Lau F., et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7(5):618-30.

14. Ohi Y., Qin H., Hong C., Blouin L., Polo J.M., Guo T., et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13(5):541-9.

15. Nazor K.L., Altun G., Lynch C., Tran H., Harness J.V., Slavin I., et al. Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell. 2012;10(5):620-34.

16. Ruiz S., Diep D., Gore A., Panopoulos A.D., Montserrat N., Plongthongkum N., et al. Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2012;109(40):16196-201.

17. Lister R., Pelizzola M., Kida Y.S., Hawkins R.D., Nery J.R., Hon G., et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature. 2011;471(7336):68-73.

18. Foldes G., Matsa E., Kriston-Vizi J., Leja T., Amisten S., Kolker L., et al. Aberrant ?-Adrenergic hypertrophic response in cardiomyocytes from human induced pluripotent cells. Stem Cell Reports. 2014;3(5):905-14.

19. Takahashi K., Yamanaka S. Induced pluripotent stem cells in medicine and biology. Development. 2013;140(12):2457-61.

20. Revazova E.S., Turovets N.A., Kochetkova O.D., Agapova L.S., Sebastian J.L., Pryzhkova M.V., et al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells. [Research Support, Non-U.S. Gov't]. 2008;10(1):11-24.

21. Isasi R.M., Knoppers B.M. Monetary payments for the procurement of oocytes for stem cell research: In search of ethical and political consistency. Stem Cell Res. 2007;1(1):37-44.

22. Deuse T., Wang D., Stubbendorff M., Itagaki R., Grabosch A., Greaves L.C., et al. SCNT-Derived ESCs with Mismatched Mitochondria Trigger an Immune Response in Allogeneic Hosts. Cell Stem Cell. 2014.

23. Lee A.S., Tang C., Rao M.S., Weissman I.L., Wu J.C. Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med. 2013;19(8):998-1004.

24. Cooke M.J., Stojkovic M., Przyborski S.A. Growth of teratomas derived from human pluripotent stem cells is influenced by the graft site. Stem Cells Dev. 2006 Apr;15(2):254-9.

25. Chung S., Shin B.S., Hedlund E., Pruszak J., Ferree A., Kang U.J., et al. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. J Neurochem. 2006;97(5):1467-80.

26. Tang C., Lee A.S., Volkmer J.P., Sahoo D., Nag D., Mosley A.R., et al. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol. 2011;29(9):829-34.

27. Choo A.B., Tan H.L., Ang S.N., Fong W.J., Chin A., Lo J., et al. Selection against undifferentiated human embryonic stem cells by a cytotoxic antibody recognizing podocalyxin-like protein-1. Stem Cells. 2008;26(6):1454-63.

28. Ben-David U., Gan Q.F., Golan-Lev T., Arora P., Yanuka O., Oren Y.S., et al. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell. 2013;12(2):167-79.

29. Narva E., Autio R., Rahkonen N., Kong L., Harrison N., Kitsberg D., et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28(4):371-7.

30. Amps K., Andrews P.W., Anyfantis G., Armstrong L., Avery S., Baharvand H., et al. Screening ethnically diverse human embryonic stem cells identifies a chromosome 20 minimal amplicon conferring growth advantage. Nat Biotechnol. 2011;29(12):1132-44.

31. Hussein S.M., Batada N.N., Vuoristo S., Ching R.W., Autio R., Narva E., et al. Copy number variation and selection during reprogramming to pluripotency. Nature. 2011;471(7336):58-62.

32. Laurent L.C., Ulitsky I., Slavin I., Tran H., Schork A., Morey R., et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8(1):106-18.

33. Daughtry B., Mitalipov S. Concise review: parthenote stem cells for regenerative medicine: genetic, epigenetic, and developmental features. Stem Cells Transl Med. 2014;3(3):290-8.

34. Ma H., Morey R., O'Neil R.C., He Y., Daughtry B., Schultz M.D., et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature. 2014;511(7508):177-83.

35. Andrews P.W., Cavanagro J., Deans R., Feigel E., Horowitz E., Keating A., et al. Harmonizing standards for producing clinical-grade therapies from pluripotent stem cells. Nat Biotechnol. 2014;32(8):724-6.

36. Martin M.J., Muotri A., Gage F., Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005;11(2):228-32.

37. Melkoumian Z., Weber J.L., Weber D.M., Fadeev A.G., Zhou Y., Dolley-Sonneville P., et al. Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotechnol. 2010;28(6):606-10.

38. Rodin S., Domogatskaya A., Strom S., Hansson E.M., Chien K.R., Inzunza J., et al. Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotechnol. [Research Support, Non-U.S. Gov't]. 2010;28(6):611-5.

39. Villa-Diaz L.G., Nandivada H., Ding J., Nogueira-de-Souza N.C., Krebsbach PH, O'Shea KS, et al. Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotechnol. 2010;28(6):581-3.

40. Miyazaki T., Futaki S., Suemori H., Taniguchi Y., Yamada M., Kawasaki M., et al. Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun. 2012;3:1236.

41. Rodin S., Antonsson L., Niaudet C., Simonson O.E., Salmela E., Hansson E.M., et al. Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun. 2014;5:3195.

42. Rodin S., Antonsson L., Hovatta O., Tryggvason K. Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc. 2014 Oct;9(10):2354-68.

43. Lu H.F., Chai C., Lim T.C., Leong M.F., Lim J.K., Gao S., et al. A defined xeno-free and feeder-free culture system for the derivation, expansion and direct differentiation of transgene-free patient-specific induced pluripotent stem cells. Biomaterials. 2014;35(9):2816-26.

44. Nakagawa M., Taniguchi Y., Senda S., Takizawa N., Ichisaka T., Asano K., et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci Rep. 2014;4:3594.

45. Taylor C.J., Bolton E.M., Pocock S., Sharples L.D., Pedersen R.A., Bradley J.A. Banking on human embryonic stem cells: estimating the number of donor cell lines needed for HLA matching. Lancet. 2005;366(9502):2019-25.

46. Didie M., Christalla P., Rubart M., Muppala V., Doker S., Unsold B., et al. Parthenogenetic stem cells for tissue-engineered heart repair. J Clin Invest. 2013;123(3):1285-98.

47. Verda L., Kim D.A., Ikehara S., Statkute L., Bronesky D., Petrenko Y., et al. Hematopoietic mixed chimerism derived from allogeneic embryonic stem cells prevents autoimmune diabetes mellitus in NOD mice. Stem Cells. 2008;26(2):381-6.

48. Grinnemo K.H., Genead R., Kumagai-Braesch M., Andersson A., Danielsson C., Mansson-Broberg A., et al. Costimulation blockade induces tolerance to HESC transplanted to the testis and induces regulatory T-cells to HESC transplanted into the heart. Stem Cells. 2008;26(7):1850-7.

49. Crook J.M., Peura T.T., Kravets L., Bosman A.G., Buzzard J.J., Horne R., et al. The generation of six clinical-grade human embryonic stem cell lines. Cell Stem Cell. 2007;1(5):490-4.

50. Stephenson E., Jacquet L., Miere C., Wood V., Kadeva N., Cornwell G., et al. Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product-free environment. Nat Protoc. 2012;7(7):1366-81.

51. Tannenbaum S.E., Turetsky T.T., Singer O., Aizenman E., Kirshberg S., Ilouz N., et al. Derivation of xeno-free and GMP-grade human embryonic stem cells--platforms for future clinical applications. PLoS One. 2012;7(6):e35325.

52. Murdoch A., Braude P., Courtney A., Brison D., Hunt C., Lawford-Davies J., et al. The procurement of cells for the derivation of human embryonic stem cell lines for therapeutic use: recommendations for good practice. Stem Cell Rev. 2012;8(1):91-9.

53. Cyranoski D. Stem-cell pioneer banks on future therapies. Nature. 2012;488(7410):139.

54. Keirstead H.S., Nistor G., Bernal G., Totoiu M., Cloutier F., Sharp K., et al. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J Neurosci. 2005;25(19):4694-705.

55. Hayden E.C. Funding windfall rescues abandoned stem-cell trial. Nature. 2014;510(7503):18.

56. Baker M. Stem-cell pioneer bows out. Nature. 2011;479(7374):459.

57. Schwartz S.D., Hubschman J.P., Heilwell G., Franco-Cardenas V., Pan C.K., Ostrick R.M., et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379(9817):713-20.

58. Schwartz S.D., Regillo C.D., Lam B.L., Eliott D., Rosenfeld P.J., Gregori N.Z., et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2014.

59. Kroon E., Martinson L.A., Kadoya K., Bang A.G., Kelly O.G., Eliazer S., et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26(4):443-52.


Для цитирования:


Родин С.А. Применение плюрипотентных стволовых клеток в медицине. Research'n Practical Medicine Journal. 2015;2(2):44-52. https://doi.org/10.17709/2409-2231-2015-2-2-44-52

For citation:


Rodin S.A. Human pluripotent stem cells in contemporary medicine. Research and Practical Medicine Journal. 2015;2(2):44-52. (In Russ.) https://doi.org/10.17709/2409-2231-2015-2-2-44-52

Просмотров: 1219


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2409-2231 (Print)
ISSN 2410-1893 (Online)