Preview

Research'n Practical Medicine Journal

Расширенный поиск

Внеклеточные митохондрии – перспективные диагностические агенты

https://doi.org/10.17709/2410-1893-2024-11-1-4

EDN: VOUACN

Аннотация

На сегодняшний день существует новая концепция, согласно которой митохондрии естественным образом циркулируют в крови, и это характерно как для человека, так и для животных. Считается, что из-за своего небольшого размера (50–400 нм) циркулирующие митохондрии могут легко проходить через тканевые барьеры. Феномен межклеточного переноса митохондрий, который является двунаправленным, наблюдался in vitro и in vivo, как в физиологических, так и в патофизиологических условиях, а также среди различных клеток, включая клетки злокачественных опухолей. Предполагается, что циркулирующие бесклеточные интактные митохондрии играют активную биологическую и физиологическую роль, поскольку митохондрии уже известны как системные посредники в межклеточной коммуникации, передающие наследственные и ненаследственные биологические компоненты. Во внеклеточном пространстве были обнаружены компоненты митохондрий клеточного происхождения, включая митохондриальную ДНК (мтДНК). В плазме крови здоровых людей примерно в 50 000 раз больше копий митохондриального генома, чем ядерного генома, исследователи подтвердили, что бесклеточная ДНК митохондрий (McfDNA) достаточно стабильна для обнаружения и количественного определения, подразумевая наличие стабильных структур, защищающих эти молекулы ДНК. Циркулирующий митохондриальный геном, который высвобождается в виде бесклеточной мтДНК, признан новым биомаркером митохондриального стресса и передачи сигналов. McfDNA стала привлекательным циркулирующим биомаркером из-за ее потенциального использования в диагностических программах при различных заболеваниях: диабет, острый инфаркт миокарда, рак. Несомненно, обнаружение циркулирующих митохондрий и их ДНК в биологических жидкостях организма открывает новое перспективное научное направление в биологии и медицине.

В обзоре проведен анализ современных научных данных, посвященных доказательству существования внеклеточных митохондрий, их функций вне клетки и диагностической ценности.

Об авторах

О. И. Кит
Национальный медицинский исследовательский центр онкологии Министерства здравоохранения Российской Федерации

г. Ростов-на-Дону, Российская Федерация

 

Кит Олег Иванович – д.м.н., профессор, академик РАН, генеральный директор ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Российская Федерация

ORCID: https://orcid.org/0000-0003-3061-6108, SPIN: 1728-0329, AuthorID: 343182, Scopus Author ID: 55994103100, Researcher ID: U-2241-2017


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Е. М. Франциянц
Национальный медицинский исследовательский центр онкологии Министерства здравоохранения Российской Федерации

г. Ростов-на-Дону, Российская Федерация

 

Франциянц Елена Михайловна – д.б.н., профессор, заместитель генерального директора по науке ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Российская Федерация

ORCID: https://orcid.org/0000-0003-3618-6890, SPIN: 9427-9928, AuthorID: 462868, Scopus Author ID: 55890047700, ResearcherID: Y-1491-2018


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



А. И. Шихлярова
Национальный медицинский исследовательский центр онкологии Министерства здравоохранения Российской Федерации

г. Ростов-на-Дону, Российская Федерация

 

Шихлярова Алла Ивановна – д.б.н., профессор, старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Российская Федерация

ORCID: https://orcid.org/0000-0003-2943-7655, SPIN: 6271-0717, Author ID: 482103, Scopus Author ID: 6507723229, Researcher ID: Y-6275-2018


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



И. В. Нескубина
Национальный медицинский исследовательский центр онкологии Министерства здравоохранения Российской Федерации

г. Ростов-на-Дону, Российская Федерация

 

Нескубина Ирина Валерьевна – к.б.н., старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Российская Федерация

ORCID: https://orcid.org/0000-0002-7395-3086, SPIN: 3581-8531, AuthorID: 794688, Scopus Author ID: 6507509066, ResearcherID: AAG-8731-2019


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



С. А. Ильченко
Национальный медицинский исследовательский центр онкологии Министерства здравоохранения Российской Федерации

г. Ростов-на-Дону, Российская Федерация

 

Ильченко Сергей Александрович – к.м.н., врач-онколог отделения абдоминальной онкологии №1, заместитель генерального директора по образовательной деятельности ФГБУ «Национальный медицинский исследовательский центр онкологии» Министерства здравоохранения Российской Федерации, г. Ростов-на-Дону, Российская Федерация

ORCID: https://orcid.org/0000-0002-0796-3307, SPIN: 2396-8795, AuthorID: 705986, Scopus Author ID: 57201300417


Конфликт интересов:

Автор заявляет об отсутствии явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.



Список литературы

1. Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020 Mar;34(3):3616–3630. https://doi.org/10.1096/fj.201901917rr

2. Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 May 19;12(1):66. https://doi.org/10.1186/s13578-022-00805-7

3. Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020 Sep;62:101128. https://doi.org/10.1016/j.arr.2020.101128

4. Zampieri LX, Silva-Almeida C, Rondeau JD, Sonveaux P. Mitochondrial transfer in cancer: a comprehensive review. Int J Mol Sci. 2021 Mar 23;22(6):3245. https://doi.org/10.3390/ijms22063245

5. Liu D, Gao Y, Liu J, Huang Y, Yin J, Feng Y, et al. Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther. 2021 Feb 16;6(1):65. https://doi.org/10.1038/s41392-020-00440-z

6. Кит О. И., Франциянц Е. М., Шихлярова А. И., Нескубина И. В. Механизмы естественного переноса митохондрий в норме и при онкопатологии. Ульяновский медико-биологический журнал. 2023;3:14–29. https://doi.org/10.34014/2227-1848-2023-3-14-29

7. Pollara J, Edwards RW, Lin L, Bendersky VA, Brennan TV. Circulating mitochondria in deceased organ donors are associated with immune activation and early allograft dysfunction. JCI Insight. 2018 Aug 9;3(15):e121622. https://doi.org/10.1172/jci.insight.121622

8. Song X, Hu W, Yu H, Wang H, Zhao Y, Korngold R, Zhao Y. Existence of Circulating Mitochondria in Human and Animal Peripheral Blood. Int J Mol Sci. 2020 Mar 19;21(6):2122. https://doi.org/10.3390/ijms21062122

9. Stefano GB, Kream RM. Mitochondrial DNA heteroplasmy as an informational reservoir dynamically linked to metabolic and immunological processes associated with COVID-19 Neurological Disorders. Cell Mol Neurobiol. 2022 Jan;42(1):99–107. https://doi.org/10.1007/s10571-021-01117-z

10. Stefano GB, Kream RM. Viruses broaden the definition of life by genomic incorporation of artificial intelligence and machine learning processes. Curr Neuropharmacol. 2022;20(10):1888–1893. https://doi.org/10.2174/1570159x20666220420121746

11. Chou SH, Lan J, Esposito E, Ning M, Balaj L, Ji X, et al. Extracellular mitochondria in cerebrospinal fluid and neurological recovery after subarachnoid hemorrhage. Stroke. 2017 Aug;48(8):2231–2237. https://doi.org/10.1161/strokeaha.117.017758

12. Joshi AU, Minhas PS, Liddelow SA, Haileselassie B, Andreasson KI, Dorn GW 2nd, Mochly-Rosen D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci. 2019 Oct;22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0 . Erratum in: Nat Neurosci. 2021 Feb;24(2):289

13. Angajala A, Lim S, Phillips JB, Kim JH, Yates C, You Z, Tan M. Diverse roles of mitochondria in immune responses: novel insights into immuno-metabolism. Front Immunol. 2018 Jul 12;9:1605. https://doi.org/10.3389/fimmu.2018.01605

14. Lynch MA. Can the emerging field of immunometabolism provide insights into neuroinflammation? Prog Neurobiol. 2020 Jan;184:101719. https://doi.org/10.1016/j.pneurobio.2019.101719

15. Wu Z, Oeck S, West AP, Mangalhara KC, Sainz AG, Newman LE, et al. Mitochondrial DNA stress signalling protects the nuclear genome. Nat Metab. 2019 Dec;1(12):1209–1218. https://doi.org/10.1038/s42255-019-0150-8

16. Dutta S, Das N, Mukherjee P. Picking up a fight: fine tuning mitochondrial innate immune defenses against RNA Viruses. Front Microbiol. 2020 Aug 31;11:1990. https://doi.org/10.3389/fmicb.2020.01990

17. Tiku V, Tan MW, Dikic I. Mitochondrial Functions in Infection and Immunity. Trends Cell Biol. 2020 Apr;30(4):263-275. https://doi.org/10.1016/j.tcb.2020.01.006 Erratum in: Trends Cell Biol. 2020 Sep;30(9):748

18. Brokatzky D, Häcker G. Mitochondria: intracellular sentinels of infections. Med Microbiol Immunol. 2022 Aug;211(4):161–172. https://doi.org/10.1007/s00430-022-00742-9

19. Boudreau LH, Duchez AC, Cloutier N, Soulet D, Martin N, Bollinger J, et al. Platelets release mitochondria serving as substrate for bactericidal group IIA-secreted phospholipase A2 to promote inflammation. Blood. 2014 Oct 2;124(14):2173–2183. https://doi.org/10.1182/blood-2014-05-573543

20. Sansone P, Savini C, Kurelac I, Chang Q, Amato LB, Strillacci A, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017 Oct 24;114(43):E9066– E9075. https://doi.org/10.1073/pnas.1704862114

21. Newell C, Hume S, Greenway SC, Podemski L, Shearer J, Khan A. Plasma-derived cell-free mitochondrial DNA: A novel non-invasive methodology to identify mitochondrial DNA haplogroups in humans. Mol Genet Metab. 2018 Dec;125(4):332–337. https://doi.org/10.1016/j.ymgme.2018.10.002

22. Grazioli S, Pugin J. Mitochondrial damage-associated molecular patterns: from inflammatory signaling to human diseases. Front Immunol. 2018 May 4;9:832. https://doi.org/10.3389/fimmu.2018.00832

23. Puhm F, Afonyushkin T, Resch U, Obermayer G, Rohde M, Penz T, et al. Mitochondria are a subset of extracellular vesicles released by activated monocytes and induce type I IFN and TNF responses in endothelial cells. Circ Res. 2019 Jun 21;125(1):43–52. https://doi.org/10.1161/circresaha.118.314601 Epub 2019 May 8. Erratum in: Circ Res. 2019 Oct 25;125(10):e93

24. Rodríguez-Nuevo A, Zorzano A. The sensing of mitochondrial DAMPs by non-immune cells. Cell Stress. 2019 May 23;3(6):195–207. https://doi.org/10.15698/cst2019.06.190

25. Bronkhorst AJ, Ungerer V, Diehl F, Anker P, Dor Y, Fleischhacker M, et al. Towards systematic nomenclature for cell-free DNA. Hum Genet. 2021 Apr;140(4):565–578. https://doi.org/10.1007/s00439-020-02227-2

26. Trumpff C, Rausser S, Haahr R, Karan KR, Gouspillou G, Puterman E, Kirschbaum C, Picard M. Dynamic behavior of cell-free mitochondrial DNA in human saliva. Psychoneuroendocrinology. 2022 Sep;143:105852. https://doi.org/10.1016/j.psyneuen.2022.105852

27. Tumburu L, Ghosh-Choudhary S, Seifuddin FT, Barbu EA, Yang S, Ahmad MM, et al. Circulating mitochondrial DNA is a proinflammatory DAMP in sickle cell disease. Blood. 2021 Jun 3;137(22):3116–3126. https://doi.org/10.1182/blood.2020009063 Erratum in: Blood. 2022 Sep 15;140(11):1327.

28. Duvvuri B, Lood C. Cell-free DNA as a biomarker in autoimmune rheumatic diseases. Front Immunol. 2019 Mar 19;10:502. https://doi.org/10.3389/fimmu.2019.00502

29. Meddeb R, Dache ZAA, Thezenas S, Otandault A, Tanos R, Pastor B, et al. Quantifying circulating cell-free DNA in humans. Sci Rep. 2019 Mar 26;9(1):5220. https://doi.org/10.1038/s41598-019-41593-4

30. Trumpff C, Marsland AL, Basualto-Alarcón C, Martin JL, Carroll JE, Sturm G, et al. Acute psychological stress increases serum circulating cell-free mitochondrial DNA. Psychoneuroendocrinology. 2019 Aug;106:268–276. https://doi.org/10.1016/j.psyneuen.2019.03.026

31. Kim K, Moon H, Lee YH, Seo JW, Kim YG, Moon JY, et al. Clinical relevance of cell-free mitochondrial DNA during the early postoperative period in kidney transplant recipients. Sci Rep. 2019 Dec 9;9(1):18607. https://doi.org/10.1038/s41598-019-54694-x

32. Varhaug KN, Vedeler CA, Myhr KM, Aarseth JH, Tzoulis C, Bindoff LA. Increased levels of cell-free mitochondrial DNA in the cerebrospinal fluid of patients with multiple sclerosis. Mitochondrion. 2017 May;34:32–35. https://doi.org/10.1016/j.mito.2016.12.003

33. Yen K, Mehta HH, Kim SJ, Lue Y, Hoang J, Guerrero N, et al. The mitochondrial derived peptide humanin is a regulator of lifespan and healthspan. Aging (Albany NY). 2020 Jun 23;12(12):11185–11199. https://doi.org/10.18632/aging.103534

34. Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet. 2020 Mar;139(3):381–399. https://doi.org/10.1007/s00439-020-02119-5

35. Reynolds JC, Lai RW, Woodhead JST, Joly JH, Mitchell CJ, Cameron-Smith D, et al. MOTS-c is an exercise-induced mitochondrial-encoded regulator of age-dependent physical decline and muscle homeostasis. Nat Commun. 2021 Jan 20;12(1):470. https://doi.org/10.1038/s41467-020-20790-0

36. Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016 Sep;35(3):347–376. https://doi.org/10.1007/s10555-016-9629-x

37. Malik AN, Parsade CK, Ajaz S, Crosby-Nwaobi R, Gnudi L, Czajka A, Sivaprasad S. Altered circulating mitochondrial DNA and increased inflammation in patients with diabetic retinopathy. Diabetes Res Clin Pract. 2015 Dec;110(3):257–265. https://doi.org/10.1016/j.diabres.2015.10.006

38. Sudakov NP, Popkova TP, Katyshev AI, Goldberg OA, Nikiforov SB, Pushkarev BG, et al. Level of blood cell-free circulating mitochondrial DNA as a novel biomarker of acute myocardial ischemia. Biochemistry (Mosc). 2015 Oct;80(10):1387–1392. https://doi.org/10.1134/s000629791510020x

39. Zhang Q, Itagaki K, Hauser CJ. Mitochondrial DNA is released by shock and activates neutrophils via p38 map kinase. Shock. 2010;34(1):55–59. https://doi.org/10.1097/shk.0b013e3181cd8c08

40. Otandault A, Anker P, Al Amir Dache Z, Guillaumon V, Meddeb R, Pastor B, et al. Recent advances in circulating nucleic acids in oncology. Ann Oncol. 2019 Mar 1;30(3):374–384. https://doi.org/10.1093/annonc/mdz031

41. Sanchez C, Snyder MW, Tanos R, Shendure J, Thierry AR. New insights into structural features and optimal detection of circulating tumor DNA determined by single-strand DNA analysis. NPJ Genom Med. 2018 Nov 23;3:31. https://doi.org/10.1038/s41525-018-0069-0

42. Heitzer E, Haque IS, Roberts CES, Speicher MR. Current and future perspectives of liquid biopsies in genomics-driven oncology. Nat Rev Genet. 2019 Feb;20(2):71–88. https://doi.org/10.1038/s41576-018-0071-5

43. Zhu Y, Zhang H, Chen N, Hao J, Jin H, Ma X. Diagnostic value of various liquid biopsy methods for pancreatic cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2020 Jan;99(3):e18581. https://doi.org/10.1097/md.0000000000018581

44. Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. Biomol Detect Quantif. 2019 Mar 18;17:100087. https://doi.org/10.1016/j.bdq.2019.100087

45. Bronkhorst AJ, Ungerer V, Oberhofer A, Holdenrieder S. The rising tide of cell-free DNA profiling: From snapshot to temporal genome analysis. Laboratoriums Medizin. 2022. https://doi.org/10.1515/labmed-2022-0030

46. Keup C, Suryaprakash V, Hauch S, Storbeck M, Hahn P, Sprenger-Haussels M, et al. Integrative statistical analyses of multiple liquid biopsy analytes in metastatic breast cancer. Genome Med. 2021 May 17;13(1):85. https://doi.org/10.1186/s13073-021-00902-1

47. Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial power of cfDNA, CTCs and EVs in oncology. Diagnostics (Basel). 2022 Mar 31;12(4):870. https://doi.org/10.3390/diagnostics12040870

48. Neuberger EWI, Hillen B, Mayr K, Simon P, Krämer-Albers EM, Brahmer A. Kinetics and topology of DNA associated with circulating extracellular vesicles released during exercise. Genes (Basel). 2021 Apr 2;12(4):522. https://doi.org/10.3390/genes12040522

49. Cisneros-Villanueva M, Hidalgo-Pérez L, Rios-Romero M, Cedro-Tanda A, Ruiz-Villavicencio CA, Page K, et al. Cell-free DNA analysis in current cancer clinical trials: a review. Br J Cancer. 2022 Feb;126(3):391–400. https://doi.org/10.1038/s41416-021-01696-0

50. Keserű JS, Soltész B, Lukács J, Márton É, Szilágyi-Bónizs M, Penyige A, et al. Detection of cell-free, exosomal and whole blood mitochondrial DNA copy number in plasma or whole blood of patients with serous epithelial ovarian cancer. J Biotechnol. 2019 Jun 10;298:76–81. https://doi.org/10.1016/j.jbiotec.2019.04.015

51. Castellani CA, Longchamps RJ, Sun J, Guallar E, Arking DE. Thinking outside the nucleus: Mitochondrial DNA copy number in health and disease. Mitochondrion. 2020 Jul;53:214–223. https://doi.org/10.1016/j.mito.2020.06.004

52. Lin YH, Lim SN, Chen CY, Chi HC, Yeh CT, Lin WR. Functional role of mitochondrial DNA in cancer progression. Int J Mol Sci. 2022 Jan 31;23(3):1659. https://doi.org/10.3390/ijms23031659

53. Gammage PA, Frezza C. Mitochondrial DNA: the overlooked oncogenome? BMC Biol. 2019 Jul 8;17(1):53. https://doi.org/10.1186/s12915-019-0668-y

54. Lam ET, Bracci PM, Holly EA, Chu C, Poon A, Wan E, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer. Cancer Res. 2012 Feb 1;72(3):686–695. https://doi.org/10.1158/0008-5472.can-11-1682

55. An Q, Hu Y, Li Q, Chen X, Huang J, Pellegrini M, et al. The size of cell-free mitochondrial DNA in blood is inversely correlated with tumor burden in cancer patients. Precis Clin Med. 2019 Sep;2(3):131–139. https://doi.org/10.1093/pcmedi/pbz014

56. Silagy M, Pes O, Marton E, Boogli G, Soltes B, Keser J, et al. Circulating cell-free nucleic acids: key characteristics and clinical applications. 2020;21(18):6827. https://doi.org/10.3390/ijms21186827

57. Yue P, Jing S, Liu L, Ma F, Zhang Y, Wang C, et al. Association between mitochondrial DNA copy number and cardiovascular disease: current evidence based on a systematic review and meta-analysis. PLoS One. 2018 Nov 7;13(11):e0206003. https://doi.org/10.1371/journal.pone.0206003

58. Dabravolski SA, Khotina VA, Sukhorukov VN, Kalmykov VA, Mikhaleva LM, Orekhov AN. The role of mitochondrial DNA mutations in cardiovascular diseases. Int J Mol Sci. 2022 Jan 16;23(2):952. https://doi.org/10.3390/ijms23020952

59. Tuchalska-Czuroń J, Lenart J, Augustyniak J, Durlik M. Is mitochondrial DNA copy number a good prognostic marker in resectable pancreatic cancer? Pancreatology. 2019 Jan;19(1):73–79. https://doi.org/10.1016/j.pan.2018.11.009

60. Gentiluomo M, Katzke VA, Kaaks R, Tjønneland A, Severi G, Perduca V, et al. Mitochondrial DNA copy-number variation and pancreatic cancer risk in the prospective EPIC cohort. Cancer Epidemiol Biomarkers Prev. 2020 Mar;29(3):681–686. https://doi.org/10.1158/1055-9965.epi-19-0868

61. Moro L. Mitochondrial DNA and mitomir variations in pancreatic cancer: potential diagnostic and prognostic biomarkers. Int J Mol Sci. 2021 Sep 7;22(18):9692. https://doi.org/10.3390/ijms22189692

62. Randeu H, Bronkhorst AJ, Mayer Z, Oberhofer A, Polatoglou E, Heinemann V, et al. Preanalytical variables in the analysis of mitochondrial DNA in whole blood and plasma from pancreatic cancer patients. Diagnostics (Basel). 2022 Aug 6;12(8):1905. https://doi.org/10.3390/diagnostics12081905

63. Bernal-Tirapo J, Bayo Jiménez MT, Yuste-García P, Cordova I, Peñas A, García-Borda FJ, et al. Evaluation of mitochondrial function in blood samples shows distinct patterns in subjects with thyroid carcinoma from those with hyperplasia. Int J Mol Sci. 2023 Mar 29;24(7):6453. https://doi.org/10.3390/ijms24076453

64. Stefano GB, Büttiker P, Weissenberger S, Esch T, Anders M, Raboch J, et al. Independent and sensory human mitochondrial functions reflecting symbiotic evolution. Front Cell Infect Microbiol. 2023 Jun 14;13:1130197. https://doi.org/10.3389/fcimb.2023.1130197

65. Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine. 2021 Mar;65:103244. https://doi.org/10.1016/j.ebiom.2021.103244

66. Catalán M, Olmedo I, Faúndez J, Jara JA. Medicinal chemistry targeting mitochondria: from new vehicles and pharmacophore groups to old drugs with mitochondrial activity. Int J Mol Sci. 2020 Nov 18;21(22):8684. https://doi.org/10.3390/ijms21228684

67. Xu J, Shamul JG, Kwizera EA, He X. Recent advancements in mitochondria-targeted nanoparticle drug delivery for cancer therapy. Nanomaterials (Basel). 2022 Feb 23;12(5):743. https://doi.org/10.3390/nano12050743


Рецензия

Для цитирования:


Кит О.И., Франциянц Е.М., Шихлярова А.И., Нескубина И.В., Ильченко С.А. Внеклеточные митохондрии – перспективные диагностические агенты. Research'n Practical Medicine Journal. 2024;11(1):40-53. https://doi.org/10.17709/2410-1893-2024-11-1-4. EDN: VOUACN

For citation:


Kit О.I., Frantsiyants E.M., Shikhlyarova A.I., Neskubina I.V., Ilchenko S.A. Extracellular mitochondria as promising diagnostic agents. Research and Practical Medicine Journal. 2024;11(1):40-53. (In Russ.) https://doi.org/10.17709/2410-1893-2024-11-1-4. EDN: VOUACN

Просмотров: 388


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-1893 (Online)