Comparative analysis of the profile of circulating microRNAs in the blood plasma of patients with gliomas
https://doi.org/10.17709/2410-1893-2024-11-2-3
EDN: LEHTGP
Abstract
Against the background of modest successes in the development of new diagnostic and therapeutic tools to improve the survival of patients with glial brain tumors, early diagnosis of this pathology remains relevant. Endogenous noncoding miRNAs that regulate the expression of target mRNAs have become attractive targets for the development of circulating biomarker-based assays, because sample acquisition does not require invasive sampling such as biopsy.
Purpose of the study. To determine the levels of circulating microRNAs in the blood plasma of patients with glial tumors, meningiomas and apparently healthy donors, using high-output sequencing.
Material and methods. 26 blood plasma samples were selected from the biobank data base of the National Medical Research Center for Oncology, and the total RNA was studied using the NGS sequencing method. The sample included: 2 cases of oligodendroglioma (grades 2–3), 6 – astrocytomas of 2–4 degrees of malignancy, 7 – glioblastomas of 4 degrees of malignancy, 7 – benign neoplasms (meningiomas), 4 – control (conditionally healthy donors).
Results. During the primary analysis, a pool of 71 differentially expressed microRNAs was identified, the expression of which was tumor-specific: 20 microRNAs for glioblastoma, 4 microRNAs for astrocytoma, 23 microRNAs for oligodendroglioma, 24 microRNAs for meningioma. At the same time, 47 microRNAs showed increased levels in the blood plasma compared to the control group, 15 showed a corresponding decrease in levels. A comparative analysis identified microRNAs that specifically differentiate each tumor type.
Conclusion. The results obtained seem promising and set the vector for further research, which will include expanding the sample and validating the identified biomarkers to determine their diagnostic value.
About the Authors
D. Yu. Gvaldin
Rostov-on-Don, Russian Federation
Dmitry Yu. Gvaldin – Cand. Sci. (Biology), Researcher at the Laboratory of Molecular Oncology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: http://orcid.org/0000-0001-8633-2660, SPIN: 8426-9283, AuthorID: 1010353, Scopus Author ID: 57215777880, ResearcherID: AAA-9894-2020
Competing Interests:
Author state that there are no conflicts of interest to disclose.
N. A. Petrusenko
Rostov-on-Don, Russian Federation
Natalia A. Petrusenko – Junior Research Associate at the Laboratory of Molecular Oncology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: https://orcid.org/0000-0001-7919-6111, SPIN: 5577-3805, AuthorID: 960639, Scopus Author ID: 57216917933, ResearcherID: AGE-9461-2022
Competing Interests:
Author state that there are no conflicts of interest to disclose.
E. E. Rostorguev
Rostov-on-Don, Russian Federation
Eduard E. Rostorguev – Dr. Sci. (Medicine), neurosurgeon, Department of Neuro-Oncology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: https://orcid.org/0000-0003-2937-0470, SPIN: 8487-9157, AuthorID: 794808, Scopus Author ID: 57196005138, ResearcherID: AAK-6852-2020
Competing Interests:
Author state that there are no conflicts of interest to disclose.
S. N. Dimitriadi
Rostov-on-Don, Russian Federation
Sergey N. Dimitriadi – Dr. Sci. (Medicine), Senior Researcher, Department of Oncourology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: https://orcid.org/0000-0002-2565-1518, SPIN: 8337-8141, AuthorID: 692389, Scopus Author ID: 57076760200
Competing Interests:
Author state that there are no conflicts of interest to disclose.
S. E. Kavitskiy
Rostov-on-Don, Russian Federation
Sergey E. Kavitskiy – neurosurgeon, consultative and diagnostic department, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: https://orcid.org/0000-0002-6924-8974, SPIN: 6437-0420, AuthorID: 734582
Competing Interests:
Author state that there are no conflicts of interest to disclose.
N. N. Timoshkina
Rostov-on-Don, Russian Federation
Natalia N. Timoshkina – Cand. Sci. (Medicine), Head of the Laboratory of Molecular Oncology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation ORCID: https://orcid.org/0000-0001-6358-7361, SPIN: 9483-4330, AuthorID: 633651, Scopus Author ID: 24077206000, ResearcherID: D-3876-2018
Competing Interests:
Author state that there are no conflicts of interest to disclose.
References
1. Pellerino A, Caccese M, Padovan M, Cerretti G, Lombardi G. Epidemiology, risk factors, and prognostic factors of gliomas. Clin Transl Imaging. 2022;10:467–475. https://doi.org/10.1007/s40336-022-00489-6
2. Mathew EN, Berry BC, Yang HW, Carroll RS, Johnson MD. Delivering Therapeutics to Glioblastoma: Overcoming Biological Constraints. Int J Mol Sci. 2022 Feb 2;23(3):1711. https://doi.org/10.3390/ijms23031711
3. Fisher JP, Adamson DC. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines. 2021 Mar 22;9(3):324. https://doi.org/10.3390/biomedicines9030324
4. Kuznetsova NS, Gurova SV, Goncharova AS, Zaikina EV, Gusareva MA, Zinkovich MS. Modern approaches to glioblastoma therapy. South Russian Journal of Cancer.https://doi.org/10.37748/2686-9039-2023-4-1-6 EDN: IICMMC
5. Gvaldin DYu, Pushkin AA, Timoshkina NN, Rostorguev EE, Nalgiev AM, Kit OI. Integratime analysis of mRNA and miRNA seprencing data for gliomas of various grades. Egyptian Journal of Medical Human Genetics. 2020;21:73 https://doi.org/10.1186/s43042-020-00119-8
6. Pushkin AA, Dzenkova EA, Timoshkina NN, Gvaldin DYu. Data analysis of high-throughput sequencing and microarray to identify key signatures of microribonucleic acids in glioblastoma. Research and Practical Medicine Journal. 2021;8(3):21–33. (In Russ.). https://doi.org/10.17709/2410-1893-2021-8-3-2
7. Sati ISEE, Parhar I. MicroRNAs Regulate Cell Cycle and Cell Death Pathways in Glioblastoma. Int J Mol Sci. 2021 Dec 17;22(24):13550. https://doi.org/10.3390/ijms222413550
8. Mahinfar P, Mansoori B, Rostamzadeh D, Baradaran B, Cho WC, Mansoori B. The Role of microRNAs in Multidrug Resistance of Glioblastoma. Cancers (Basel). 2022 Jun 30;14(13):3217. https://doi.org/10.3390/cancers14133217
9. Ahmed SP, Castresana JS, Shahi MH. Role of Circular RNA in Brain Tumor Development. Cells. 2022 Jul 6;11(14):2130. https://doi.org/10.3390/cells11142130
10. Pushkin AA, Gvaldin DYu, Timoshkina NN, Rostorguev EE, Vladimirova LYu, Dzenkova EA. Analysis of Gene Expression Omnibus high-throughput sequencing data for the determination of microribonucleic acids in the blood plasma of patients with glioblastomas. Research and Practical Medicine Journal.2022;9(1):54–64. (In Russ.). https://doi.org/10.17709/2410-1893-2022-9-1-5
11. Kit OI, Pushkin AA, Alliluyev IA, Timoshkina NN, Gvaldin DYu, Rostorguev EE, Kuznetsova NS. Differential expression of microRNAs targeting genes associated with the development of high-grade gliomas. Egyptian Journal of Medical Human Genetics. 2022;23(31). https://doi.org/10.1186/s43042-022-00245-5
12. Valihrach L, Androvic P, Kubista M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol Aspects Med. 2020 Apr;72:100825. https://doi.org/10.1016/j.mam.2019.10.002
13. Pushkin AA, Kit OI, Rostorguev EE, Novikova IA, Dzenkova EA, Timoshkina NN, et al. A method for minimally invasive diagnosis of meningiomas and glial tumors with clarification of the grade of malignancy. A patent for an invention 2788814 C1, 01.24.2023. (In Russ.).
14. Müller Bark J, Kulasinghe A, Chua B, Day BW, Punyadeera C. Circulating biomarkers in patients with glioblastoma. Br J Cancer. 2020 Feb;122(3):295–305. https://doi.org/10.1038/s41416-019-0603-6
15. Yi Z, Qu C, Zeng Y, Liu Z. Liquid biopsy: early and accurate diagnosis of brain tumor. J Cancer Res Clin Oncol. 2022 Sep;148(9):2347– 2373. https://doi.org/10.1007/s00432-022-04011-3
16. Caputo V, Ciardiello F, Corte CMD, Martini G, Troiani T, Napolitano S. Diagnostic value of liquid biopsy in the era of precision medicine: 10 years of clinical evidence in cancer. Explor Target Antitumor Ther. 2023;4(1):102–138. https://doi.org/10.37349/etat.2023.00125
17. Licursi V, Conte F, Fiscon G, Paci P. MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinformatics. 2019 Nov 4;20(1):545. https://doi.org/10.1186/s12859-019-3105-x
18. Pushkin AA, Gvaldin DYu, Petrusenko NA, Rostorguev EE, Kavitskiy SE, Timoshkina NN. miRNA levels of tumours and plasma in glioma patients. Modern Problems of Science and Education. 2023;5. (In Russ.). https://doi.org/10.17513/spno.32954
19. Dong L, Li Y, Han C, Wang X, She L, Zhang H. miRNA microarray reveals specific expression in the peripheral blood of glioblastoma patients. Int J Oncol. 2014 Aug;45(2):746–756. https://doi.org/10.3892/ijo.2014.2459
20. Akers JC, Hua W, Li H, Ramakrishnan V, Yang Z, Quan K, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017 Jun 1;8(40):68769–68779. https://doi.org/10.18632/oncotarget.18332
21. Lu S, Yu Z, Zhang X, Sui L. MiR-483 Targeted SOX3 to Suppress Glioma Cell Migration, Invasion and Promote Cell Apoptosis. Onco Targets Ther. 2020 Mar 9;13:2153–2161. https://doi.org/10.2147/ott.s240619
22. Buonfiglioli A, Efe IE, Guneykaya D, Ivanov A, Huang Y, Orlowski E, et al. let-7 MicroRNAs Regulate Microglial Function and Suppress Glioma Growth through Toll-Like Receptor 7. Cell Rep. 2019 Dec 10;29(11):3460–3471.e7. https://doi.org/10.1016/j.celrep.2019.11.029
23. Duan ML, Du XM. The Crosstalk between MicroRNA-196a and Annexin-A1: A Potential Mechanism for Oral Squamous Cell Carcinoma Progression. Indian J Pharm Sci. 2022;84(5):144–151 https://doi.org/10.36468/pharmaceutical-sciences.spl.581
24. Akers JC, Hua W, Li H, Ramakrishnan V, Yang Z, Quan K, et al. A cerebrospinal fluid microRNA signature as biomarker for glioblastoma. Oncotarget. 2017 Jun 1;8(40):68769–68779. https://doi.org/10.18632/oncotarget.18332
25. Gao F, Cui Y, Jiang H, Sui D, Wang Y, Jiang Z, et al. Circulating tumor cell is a common property of brain glioma and promotes the monitoring system. Oncotarget. 2016 Nov 1;7(44):71330–71340. https://doi.org/10.18632/oncotarget.11114
Review
For citations:
Gvaldin D.Yu., Petrusenko N.A., Rostorguev E.E., Dimitriadi S.N., Kavitskiy S.E., Timoshkina N.N. Comparative analysis of the profile of circulating microRNAs in the blood plasma of patients with gliomas. Research and Practical Medicine Journal. 2024;11(2):36-45. (In Russ.) https://doi.org/10.17709/2410-1893-2024-11-2-3. EDN: LEHTGP