ОБЗОР ПОДХОДОВ К ИММУНОТЕРАПИИ В ОНКОЛОГИИ
https://doi.org/10.17709/2409-2231-2017-4-3-5
Аннотация
В статье рассматриваются современные представления об иммунной терапии рака — методике лечения онкологических заболеваний, основанной на иммунологических реакциях организма на появление в нем злокачественных клеток. Данная область активно исследуется в клинической практике в последнее десятилетие, и некоторые терапии уже получили одобрение для применения регуляторными органами после многообещающих результатов клинических исследований 3‑й фазы.
Иммунная терапия основана на противоопухолевом иммунном цикле — каскаде процессов, ответственных за реакцию иммунной системы на опухолевые клетки. Задействованные в нем регуляторные механизмы становятся целями для различных терапий, общая цель которых — восстановить полноценное функционирование цикла и достичь элиминации раковых клеток.
В настоящее время наиболее изучены два вида иммунотерапии — чекпойнт-ингибиторы (checkpoint-inhibitors) и адаптивная клеточная терапия. Чекпойнт-ингибиторы увеличивают активность имеющихся в организме иммунокомпетентных клеток, уменьшая ингибирующее влияние опухолевого микроокружения и самих опухолевых клеток, которое позволило им выйти из-под прессинга иммунитета в ходе развития заболевания. Адаптивная клеточная терапия, в свою очередь, позволяет возместить нехватку активных иммунокомпетентных по отношению к опухоли клеток. Механизмы действия определяют различную эффективность терапий как для разных заболеваний, так и для пациентов «внутри» одного диагноза. Для определения эффективности того или другого лечения до его начала у конкретного пациента необходимо использовать последние достижения прецизионной медицины, основанные на поиске новых биомаркеров и их анализа у каждого пациента в отдельности. Такой подход позволит значительно сократить расходы и сохранить драгоценное время для пациента.
Об авторах
И. Л. ЦаревРоссия
клинический ординатор кафедры клинической фармакологии и фармакотерапии ИПО,
115114, Москва, Шлюзовая набережная, д. 6, стр. 4
А. В. Мелерзанов
Россия
к.м.н, декан факультета биологической и медицинской физики,
141701, Московская облаcть, г. Долгопрудный, Институтский пер., д. 9
Список литературы
1. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N Engl J Med. 2015 Jan 22;372 (4):320–30. DOI: 10.1056/NEJMoa1412082
2. Larkin J, Hodi FS, Wolchok JD. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 2015 Sep 24;373 (13):1270–1. DOI: 10.1056/NEJMc1509660
3. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N Engl J Med. 2010 Aug 19;363 (8):711–23. DOI: 10.1056/NEJMoa1003466
4. Chen DS, Mellman I. Oncology meets immunology: The cancer-immunity cycle. Immunity. 2013 Jul 25;39 (1):1–10. DOI: 10.1016/j.immuni.2013.07.012
5. Kakimi K, Karasaki T, Matsushita H, Sugie T. Advances in personalized cancer immunotherapy. Breast Cancer. 2017 Jan;24 (1):16–24. DOI: 10.1007/s12282–016–0688–1
6. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic Cell Death in Cancer Therapy. Annu Rev Immunol. 2013;31:51–72. DOI: 10.1146/annurev-immunol‑032712–100008
7. Cerundolo V, Hermans IF, Salio M. Dendritic cells: a journey from laboratory to clinic. Nat Immunol. 2004 Jan;5 (1):7–10. DOI: 10.1038/ni0104–7
8. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015 Apr 3;348 (6230):56–61. DOI: 10.1126/science. aaa8172
9. Franciszkiewicz K, Boissonnas A, Boutet M, Combadière C, Mami-Chouaib F. Role of chemokines and chemokine receptors in shaping the effector phase of the antitumor immune response. Cancer Res. 2012 Dec 15;72 (24):6325–32. DOI: 10.1158/0008–5472.CAN‑12–2027
10. Franciszkiewicz K, Le Floc’h A, Boutet M, Vergnon I, Schmitt A, Mami-Chouaib F. CD103 or LFA‑1 engagement at the immune synapse between cytotoxic T cells and tumor cells promotes maturation and regulates T‑cell effector functions. Cancer Res. 2013 Jan 15;73 (2):617–28. DOI: 10.1158/0008–5472.CAN‑12–2569
11. Corbière V, Chapiro J, Stroobant V, Ma W, Lurquin C, Lethé B, et al., Antigen spreading contributes to MAGE vaccination-induced regression of melanoma metastases. Cancer Res. 2011 Feb 15;71 (4):1253–62. DOI: 10.1158/0008–5472.CAN‑10–2693
12. Predina J, Eruslanov E, Judy B, Kapoor V, Cheng G, Wang LC, et al. Changes in the local tumor microenvironment in recurrent cancers may explain the failure of vaccines after surgery. Proc Natl Acad Sci U S A. 2013 Jan 29;110 (5): E415–24. DOI: 10.1073/pnas.1211850110
13. Wang L, Qian J, Lu Y, Li H, Bao H, He D, et al. Immune evasion of mantle cell lymphoma: expression of B7‑H1 leads to inhibited T‑cell response to and killing of tumor cells. Haematologica. 2013 Sep;98 (9):1458–66. DOI: 10.3324/haematol.2012.071340
14. Ferguson TA, Choi J, Green DR. Armed response: how dying cells influence T‑cell functions. Immunol Rev. 2011 May;241 (1):77–88. DOI: 10.1111/j.1600–065X.2011.01006.x.
15. Viaud S, Daillère R, Boneca IG, Lepage P, Langella P, Chamaillard M, et al. Gut microbiome and anticancer immune response: really hot Sh*t! Cell Death Differ. 2015 Feb;22 (2):199–214. DOI: 10.1038/cdd.2014.56
16. Lippitz BE. Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol. 2013 May;14 (6): e218–28. DOI: 10.1016/S1470–2045 (12)70582‑X
17. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480 (7378):480–9. DOI: 10.1038/nature10673
18. So T, Lee SW, Croft M. Tumor Necrosis Factor/Tumor Necrosis Factor Receptor Family Members That Positively Regulate Immunity. Int J Hematol. 2006 Jan;83 (1):1–11. DOI: 10.1532/IJH97.05120
19. Riella LV, Paterson AM, Sharpe AH, Chandraker A. Role of the PD‑1 Pathway in the Immune Response. Am J Transplant. 2012 Oct;12 (10):2575–87. DOI: 10.1111/j.1600–6143.2012.04224.x
20. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, et al. PD‑1 Blockade Enhances T‑cell Migration to Tumors by Elevating IFN- Inducible Chemokines. Cancer Res. 2012 Oct 15;72 (20):5209–18. DOI: 10.1158/0008–5472.CAN‑12–1187
21. Topalian SL, Drake CG, Pardoll DM. Targeting the PD‑1/B7‑H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol. 2012 Apr;24 (2):207–12. DOI: 10.1016/j.coi.2011.12.009
22. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013 Jan 31;121 (5):734–44. DOI: 10.1182/blood‑2012–10–385591
23. Chen DS, Irving BA, Hodi FS. Molecular Pathways: Next-Generation Immunotherapy — Inhibiting Programmed Death-Ligand 1 and Programmed Death‑1. Clin Cancer Res. 2012 Dec 15;18 (24):6580–7. DOI: 10.1158/1078–0432.CCR‑12–1362
24. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA‑4 blockade. Science. 1996 Mar 22;271 (5256):1734–6
25. Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016 May;13 (5):273–90. DOI: 10.1038/nrclinonc.2016.25
26. Matheu MP, Othy S, Greenberg ML, Dong TX, Schuijs M, Deswarte K, Hammad H, et al. Imaging regulatory T cell dynamics and CTLA4‑mediated suppression of T cell priming. Nat Commun. 2015 Feb 5;6:6219. DOI: 10.1038/ncomms7219
27. Ribas A. Releasing the Brakes on Cancer Immunotherapy. N Engl J Med. 2015 Oct 15;373 (16):1490–2. DOI: 10.1056/NEJMp1510079
28. Robert C, Thomas L, Bondarenko I, O’Day S, Weber J, Garbe C, et al. Ipilimumab plus Dacarbazine for Previously Untreated Metastatic Melanoma. N Engl J Med. 2011 Jun 30;364 (26):2517–26. DOI: 10.1056/NEJMoa1104621
29. Emens LA, Ascierto PA, Darcy PK, Demaria S, Eggermont AMM, Redmond WL, et al., “Cancer immunotherapy: Opportunities and challengesin the rapidly evolving clinical landscape. Eur J Cancer. 2017 Aug;81:116–129. DOI: 10.1016/j.ejca.2017.01.035.
30. Weber JS, Kähler KC, Hauschild A. Management of Immune-Related Adverse Events and Kinetics of Response With Ipilimumab. J Clin Oncol. 2012 Jul 20;30 (21):2691–7. DOI: 10.1200/JCO.2012.41.6750
31. Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A. 2003 Jul 8;100 (14):8372–7. DOI: 10.1073/pnas.1533209100
32. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA‑4 and PD‑1 Receptors Inhibit T‑Cell Activation by Distinct Mechanisms. Mol Cell Biol. 2005 Nov;25 (21):9543–53. DOI: 10.1128/MCB.25.21.9543–9553.2005
33. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD‑1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. DOI: 10.1146/annurev.immunol.26.021607.090331
34. Hamanishi J, Mandai M, Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol. 2016;28(7):339-348. DOI:10.1093/intimm/dxw020
35. Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al. Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med. 2015 Nov 5;373 (19):1803–13. DOI: 10.1056/NEJMoa1510665.
36. Gettinger SN, Horn L, Gandhi L, Spigel DR, Antonia SJ, Rizvi NA, et al. Overall Survival and Long-Term Safety of Nivolumab (Anti-Programmed Death 1 Antibody, BMS‑936558, ONO‑4538) in Patients With Previously Treated Advanced Non-Small-Cell Lung Cancer. J Clin Oncol. 2015 Jun 20;33 (18):2004–12. DOI: 10.1200/JCO.2014.58.3708.
37. Herbst RS, Baas P, Kim DW, Felip E, Pérez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1‑positive, advanced non-small-cell lung cancer (KEYNOTE‑010): a randomised controlled trial. Lancet. 2016 Apr 9;387 (10027):1540–50. DOI: 10.1016/S0140–6736 (15)01281–7
38. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L, et al. Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med. 2015 Jun 25;372 (26):2521–32. DOI: 10.1056/NEJMoa1503093
39. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. Loss of CTLA‑4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA‑4. Immunity. 1995 Nov;3 (5):541–7
40. Nishimura H, Nose M, Hiai H, Minato N, Honjo T. Development of lupus-like autoimmune diseases by disruption of the PD‑1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999 Aug;11 (2):141–51.
41. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012 Jun 28;366 (26):2455–65. DOI: 10.1056/NEJMoa1200694
42. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the Evaluation of Immune Therapy Activity in Solid Tumors: Immune-Related Response Criteria. Clin Cancer Res. 2009 Dec 1;15 (23):7412–20. DOI: 10.1158/1078–0432.CCR‑09–1624
43. Hodi FS, Hwu WJ, Kefford R, Weber JS, Daud A, Hamid O, et al. Evaluation of Immune-Related Response Criteria and RECIST v1.1 in Patients With Advanced Melanoma Treated With Pembrolizumab. J Clin Oncol. 2016 May 1;34 (13):1510–7. DOI: 10.1200/JCO.2015.64.0391.
44. Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Elsevier Inc., 2017.
45. Goldberg MV, Drake CG. LAG‑3 in Cancer Immunotherapy. Curr Top Microbiol Immunol. 2011;344:269–78. DOI: 10.1007/82_2010_114
46. US Natl. Libr. Sci. Clin. [online]. Available at: https://www.clinicaltrials.gov/ct2/show/NCT01968109
47. Andreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene‑3 (CD223). J Immunol. 2002 Apr 15;168 (8):3874–80
48. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F. A Phase I Pharmacokinetic and Biological Correlative Study of IMP321, a Novel MHC Class II Agonist, in Patients with Advanced Renal Cell Carcinoma. Clin Cancer Res. 2009 Oct 1;15 (19):6225–31. DOI: 10.1158/1078–0432.CCR‑09–0068
49. Jin H.-T, Anderson AC, Tan WG, West EE, Ha SJ, Araki K, et al. Cooperation of Tim‑3 and PD‑1 in CD8 T‑cell exhaustion during chronic viral infection. Proc Natl Acad Sci U S A. 2010 Aug 17;107 (33):14733–8. DOI: 10.1073/pnas.1009731107
50. US Natl. Libr. Sci. Clin. [online]. Available at: https://clinicaltrials.gov/ct2/show/NCT02817633
51. US Natl. Libr. Sci. Clin. [online]. Available at: https://clinicaltrials.gov/ct2/show/NCT02671955
52. Vinay DS, Kwon BS. 4–1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep. 2014 Mar;47 (3):122–9
53. Weigelin B, Bolaños E. Rodriguez‑ruiz ME, Martinez‑forero I, Friedl P, Melero I. Anti‑CD137 monoclonal antibodies and adoptive T cell therapy: a perfect marriage? Cancer Immunol Immunother. 2016 May;65 (5):493–7. DOI: 10.1007/s00262–016–1818–5
54. Uno T, Takeda K, Kojima Y, Yoshizawa H, Akiba H, Mittler RS, et al. Eradication of established tumors in mice by a combination antibody-based therapy. Nat Med. 2006 Jun;12 (6):693–8. Epub 2006 May 7. DOI: 10.1038/nm1405
55. Curran MA, Kim M, Montalvo W, Al-Shamkhani A, Allison JP. Combination CTLA‑4 Blockade and 4–1BB Activation Enhances Tumor Rejection by Increasing T‑Cell Infiltration, Proliferation, and Cytokine Production. PLoS One. 2011 Apr 29;6 (4): e19499. DOI: 10.1371/journal.pone.0019499
56. Molckovsky A, Siu LL. First-in-class, first-in-human phase I results of targeted agents: highlights of the 2008 American society of clinical oncology meeting. J Hematol Oncol. 2008 Oct 29;1:20. DOI: 10.1186/1756–8722–1-20
57. Baumann R, Yousefi S, Simon D, Russmann S, Mueller C, Simon H.-U. Functional expression of CD134 by neutrophils. Eur J Immunol. 2004 Aug;34 (8):2268–75. DOI: 10.1002/eji.200424863
58. Hirschhorn-Cymerman D, Rizzuto GA, Merghoub T, Cohen AD, Avogadri F, Lesokhin AM, et al. OX40 engagement and chemotherapy combination provides potent antitumor immunity with concomitant regulatory T cell apoptosis. J Exp Med. 2009 May 11;206 (5):1103–16. DOI: 10.1084/jem.20082205
59. Pan P.-Y, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther. 2002 Oct;6 (4):528–36
60. Curti BD, Kovacsovics-Bankowski M, Morris N, Walker E, Chisholm L, Floyd K, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013 Dec 15;73 (24):7189–7198. DOI: 10.1158/0008–5472.CAN‑12–4174
61. US Natl. Libr. Sci. Clin. [online]. Available at: ttps://clinicaltrials.gov/ct2/show/NCT01303705
62. Thomas LJ, He L.-Z, Marsh H, Keler T. Targeting human CD27 with an agonist antibody stimulates T‑cell activation and antitumor immunity. Oncoimmunology. 2014 Jan 1;3 (1): e27255.
63. US Natl. Libr. Sci. Clin. [online]. Available at: https://clinicaltrials.gov/ct2/show/NCT01460134
64. Carthon BC, Wolchok JD, Yuan J, Kamat A, Ng Tang DS, Sun J, et al. Preoperative CTLA‑4 Blockade: Tolerability and Immune Monitoring in the Setting of a Presurgical Clinical Trial. Clin Cancer Res. 2010 May 15;16 (10):2861–71. DOI: 10.1158/1078–0432.CCR‑10–0569.
65. US Natl. Libr. Sci. Clin. [online]. Available at: https://clinicaltrials.gov/ct2/show/NCT02520791
66. Novartis CAR-T cell therapy CTL019 unanimously (10–0) recommended for approval by FDA advisory committee to treat pediatric, young adult r/r B‑cell ALL. https://www.novartis.com/news/media-releases/novartis-car-t‑cell-therapy-ctl019‑unanimously‑10–0‑recommended-approval-fda [online].
67. Gilham DE, Anderson J, Bridgeman JS, Hawkins RE, Exley MA, Stauss H, et al. Adoptive T‑cell therapy for cancer in the United kingdom: a review of activity for the British Society of Gene and Cell Therapy annual meeting 2015. Hum Gene Ther. 2015 May;26 (5):276–85. DOI: 10.1089/hum.2015.024
68. Besser MJ, Shapira-Frommer R, Itzhaki O, Treves AJ, Zippel DB, Levy D, et al. Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma: Intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies. Clin Cancer Res. 2013 Sep 1;19 (17):4792–800. DOI: 10.1158/1078–0432.CCR‑13–0380
69. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8 + T cells. J Exp Med. 2005 Oct 3;202 (7):907–12. DOI: 10.1084/jem.20050732
70. Farkona S, Diamandis EP, Blasutig IM. Сancer immunotherapy: the beginning of the end of cancer? BMC Med. 2016 May 5;14:73. DOI: 10.1186/s12916–016–0623–5
71. Morgan RA, Dudley ME, Rosenberg SA. Adoptive Cell Therapy. Cancer J. 2010 Jul-Aug;16 (4):336–41. DOI: 10.1097/PPO.0b013e3181eb3879
72. Whilding LM, Maher J. CAR T‑cell immunotherapy: The path from the by-road to the freeway? Mol Oncol. 2015 Dec;9 (10):1994–2018. DOI: 10.1016/j.molonc.2015.10.012
73. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T‑cell receptors. Proc Natl Acad Sci U S A. 1993 Jan 15;90 (2):720–4.
74. Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006 Oct 15;12 (20 Pt 1):6106–15. DOI: 10.1158/1078–0432.CCR‑06–1183
75. Maus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, et al. T Cells Expressing Chimeric Antigen Receptors Can Cause Anaphylaxis in Humans. Cancer Immunol Res. 2013 Jul;1 (1):26–31. DOI: 10.1158/2326–6066.CIR‑13–0006
76. Adusumilli PS, Cherkassky L, Villena-Vargas J, Colovos C, Servais E, Plotkin J, et al. Regional delivery of mesothelin-targeted CAR T cell therapy generates potent and long-lasting CD4‑dependent tumor immunity. Sci Transl Med. 2014 Nov 5;6 (261):261ra151. DOI: 10.1126/scitranslmed.3010162
77. Johnson LA, Scholler J, Ohkuri T, Kosaka A, Patel PR, McGettigan SE, et al. Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med. 2015 Feb 18;7 (275):275ra22. DOI: 10.1126/scitranslmed.aaa4963
78. Sun M, Shi H, Liu C, Liu J, Liu X, Sun Y. Construction and evaluation of a novel humanized HER2‑specific chimeric receptor. Breast Cancer Res. 2014 Jun 11;16 (3): R61. DOI: 10.1186/bcr3674.
79. Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008 Apr 1;180 (7):4901–9.
80. Guest RD, Hawkins RE, Kirillova N, Cheadle EJ, Arnold J, O’Neill A, et al. The role of extracellular spacer regions in the optimal design of chimeric immune receptors: evaluation of four different scFvs and antigens. J Immunother. 2005 May-Jun;28 (3):203–11
81. Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The Optimal Antigen Response of Chimeric Antigen Receptors Harboring the CD3 Transmembrane Domain Is Dependent upon Incorporation of the Receptor into the Endogenous TCR/CD3 Complex. J Immunol. 2010 Jun 15;184 (12):6938–49. DOI: 10.4049/jimmunol.0901766
82. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T‑cell receptor chimeric molecules as functional receptors with antibody-type specificity (chimeric genes/antibody variable region). Proc Natl Acad Sci U S A. 1989 Dec;86 (24):10024–8.
83. Singh H, Huls H, Kebriaei P, Cooper LJ. A new approach to gene therapy using Sleeping Beauty to genetically modify clinical-grade T cells to target CD19. Immunol Rev. 2014 Jan;257 (1):181–90. DOI: 10.1111/imr.12137.
84. Tumaini B, Lee DW, Lin T, Castiello L, Stroncek DF, Mackall C, et al. Simplified process for the production of anti–CD19‑CAR–engineered T cells. Cytotherapy. 2013 Nov;15 (11):1406–15. DOI: 10.1016/j.jcyt.2013.06.003
85. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T‑cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989 Dec;86 (24):10024–8.
86. Stambrook PJ, Maher J, Farzaneh F. Cancer Immunotherapy: Whence and Whither. Mol Cancer Res. 2017 Jun;15 (6):635–650. DOI: 10.1158/1541–7786.MCR‑16–0427
87. Davila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, et al. Efficacy and Toxicity Management of 19–28z CAR T Cell Therapy in B Cell Acute Lymphoblastic Leukemia. Sci Transl Med. 2014 Feb 19;6 (224):224ra25. DOI: 10.1126/scitranslmed.3008226
88. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991 Mar 8;64 (5):891–901.
89. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T‑lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ/CD28 receptor. Nat Biotechnol. 2002 Jan;20 (1):70–5. DOI: 10.1038/nbt0102–70
90. Zhong X.-S, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric Antigen Receptors Combining 4–1BB and CD28 Signaling Domains Augment PI3kinase/AKT/Bcl-XL Activation and CD8+ T Cell–mediated Tumor Eradication. Mol Ther. 2010 Feb;18 (2):413–20. DOI: 10.1038/mt.2009.210
91. Kobold S, Grassmann S, Chaloupka M, Lampert C, Wenk S, Kraus F, et al. Impact of a New Fusion Receptor on PD‑1–Mediated Immunosuppression in Adoptive T Cell Therapy. J Natl CancerInst. 2015 Jun 23;107 (8). pii: djv146. DOI: 10.1093/jnci/djv146
92. Pegram HJ, Purdon TJ, van Leeuwen DG, Curran KJ, Giralt SA, Barker JN, et al. IL‑12‑secreting CD19‑targeted cord blood-derived T cells for the immunotherapy of B‑cell acute lymphoblastic leukemia. Leukemia. 2015 Feb;29 (2):415–22. DOI: 10.1038/leu.2014.215
93. Roybal KT, Rupp LJ, Morsut L, Walker WJ, McNally KA, Park JS, Lim WA. Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits. Cell. 2016 Feb 11;164 (4):770–9. DOI: 10.1016/j.cell.2016.01.011
94. Schumacher TN, Kesmir C, van Buuren MM. Biomarkers in Cancer Immunotherapy. Cancer Cell. 2015 Jan 12;27 (1):12–4. DOI: 10.1016/j.ccell.2014.12.004
95. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic Basis for Clinical Response to CTLA‑4 Blockade in Melanoma. N Engl J Med. 2014 Dec 4;371 (23):2189–2199. DOI: 10.1056/NEJMoa1406498.
96. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD‑1 blockade in non-small cell lung cancer. Science. 2015 Apr 3;348 (6230):124–8. DOI: 10.1126/science.aaa1348
97. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and Transcriptomic Features of Response to Anti-PD‑1 Therapy in Metastatic Melanoma. Cell. 2017 Jan 26;168 (3):542. DOI: 10.1016/j.cell.2017.01.010
98. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014 Nov 27;515 (7528):563–7. DOI: 10.1038/nature14011
99. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD‑1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014 Nov 27;515 (7528):568–71. DOI: 10.1038/nature13954
100. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-421. DOI:10.1038/nature12477..
101. Moon EK, Wang LC, Dolfi DV, Wilson CB, Ranganathan R, Sun J, et al. Multifactorial T‑cell Hypofunction That Is Reversible Can Limit the Efficacy of Chimeric Antigen Receptor-Transduced Human T cells in Solid Tumors. Clin Cancer Res. 2014 Aug 15;20 (16):4262–73. DOI: 10.1158/1078–0432.CCR‑13–2627
102. Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov. 2017 Jul;7 (7):675–693. DOI: 10.1158/2159–8290
103. Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood. 2014 Jul 17;124 (3):453–62. DOI: 10.1182/blood‑2014–04–567933
104. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016 Feb;6 (2):202–16. DOI: 10.1158/2159–8290.CD‑15–0283
105. Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature. 2015 Jul 9;523 (7559):231–5. DOI: 10.1038/nature14404
106. John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, et al. Anti-PD‑1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells. Clin Cancer Res. 2013 Oct 15;19 (20):5636–46. DOI: 10.1158/1078–0432.CCR‑13–0458
107. Stafford JH, Hirai T, Deng L, Chernikova SB, Urata K, West BL, Brown JM. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization. Neuro Oncol. 2016 Jun;18 (6):797–806. DOI: 10.1093/neuonc/nov272
Рецензия
Для цитирования:
Царев И.Л., Мелерзанов А.В. ОБЗОР ПОДХОДОВ К ИММУНОТЕРАПИИ В ОНКОЛОГИИ. Research'n Practical Medicine Journal. 2017;4(3):51-65. https://doi.org/10.17709/2409-2231-2017-4-3-5
For citation:
Tsarev I.L., Melerzanov A.V. REVIEW OF APPROACHES TO IMMUNOTHERAPY IN ONCOLOGY. Research and Practical Medicine Journal. 2017;4(3):51-65. (In Russ.) https://doi.org/10.17709/2409-2231-2017-4-3-5